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The influence of model size on the estimation accuracy of estimation
methods in structural equation models with ordinal variables

Structural equation modeling has become a popular tool in marketing but a problem
with the its application is that most researchers use ordinal answer scales in their sur-
veys, whereas most of the popular estimation methods assume continuous variables. Es-
timation methods that can deal with ordinal scales have been published; however, the
impact of model size on estimation accuracy of these methods has not been investigated.
This study uses a Monte Carlo simulation to test, how well five different estimation meth-
ods (three that assume continuous variables, two that can deal with ordinal variables)
perform under several model size constellations. Apart from estimation method and
model size, sample size and two factors on construct validity are also considered. Re-
sults show that diagonally weighted least squares with a polychoric correlation matrix is
among the best estimation methods most of the time, but, in several constellations, other
estimation methods often perform equally well.
keywords: structural equation modeling, estimation method, ordinal variables

track: Methods, Modelling and Marketing Analytics
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1 Introduction

Since its introduction over 35 years ago, structural equation modeling has become one of
the most popular tools in marketing and social sciences (see, e.g., Hwang, Malhotra, Kim,
Tomiuk, and Hong, 2010). But there are several problems associated with structural equation
modeling. A serious problem occurs during the data collection process. Often, subjects are
given ordinal answer scales, e.g., Likert-type scales, but during the estimation process, these
items are treated as continuous variables because most of the widely used estimation methods
such as maximum likelihood (ML) assume continuous and multivariate normally distributed
variables (Bollen, 1989). This mistreatment undermines the accuracy of model estimates and
can lead to wrong or at least misleading conclusions (Kaplan, 2009). Estimation methods for
ordinal scales are available, but studies comparing these methods provide mixed findings. The
main research goal of this paper consists in clarifying how different estimation methods influ-
ence estimation accuracy for structural equation models of different model sizes. Three dif-
ferent estimation methods that are commonly used (conventional ML, ULS, and GLS) as well
as two methods that are developed for ordinal variables (ULS-cat and DWLS-cat) are investi-
gated.
The paper differs from the extant literature on structural equation modeling simulation with
ordinal variables in three important aspects. First, this study simulates the values of each arti-
ficial respondent individually. To the knowledge of the author, no other simulation study (e.g.,
Marsh, Hau, Balla, and Grayson, 2004) tried to accomplish this. Second, model size is split
into three different experimental factors: the number of exogenous constructs, number of en-
dogenous constructs, and the number of items per construct. Prior studies (e.g., Li 2016) often
use a fixed model or only include a single factor for model size. An exception is the recent
study of Shi, DiStefano, McDaniel, and Jiang (2018) who differentiate between the number of
items and the number of constructs. As a third distinguishing aspect, this study also considers
construct reliability as an influence on estimation accuracy. Most of the time, studies use fac-
tor loadings as experimental factor (see, e.g., Reinartz, Haenlein, and Henseler, 2009) and do
not analyze if the resulting constructs vary in their reliability.

2 Structural equation modeling

Consistent with literature (Bollen, 1989), the usual notation for the structural model is applied:

η = Bη +Γξ +ζ (1)

where η and ξ are the endogenous and exogenous constructs, respectively, and ζ is a vector of
random errors. The reflective measurement models of the SEM are defined as:

x = Λxξ +δ y = Λyη + ε. (2)
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x and y stand for the p- and q-dimensional vectors of manifest items, Λx and Λy are item load-
ing matrices and δ and ε denote measurement error vectors.

3 Experimental Design of the Monte Carlo study

3.1 Experimental Factors

Five different methods to estimate the structural equation models are tested:

1. Maximum likelihood (ML) estimation
2. Unweighted least squares (ULS) estimation
3. Generalized least squares (GLS) estimation
4. ULS estimation with a polychoric correlation matrix (ULS-cat)
5. Diagonally weighted least squares estimation with a polychoric correlation matrix (DWLS-

cat)

Studies have shown that ULS-cat and DWLS-cat often outperform other estimation methods
(e.g. Li, 2016), but the results are not unanimous in whether ULS-cat or DWLS-cat is superior
(Bandalos, 2014, Shi et al., 2018). Furthermore, the studies state that ML, ULS, and GLS also
are not without merits. Apart from the estimation method, six additional experimental factors
are used in this study (see Table 1). Model size is a source of model fit variation (Kenny &

Table 1: Experimental Factors in the Simulation
Experimental Factor Variable Name Factor Levels
Estimation method estiMet ML, ULS, GLS, ULS-cat, DWLS-cat
Model size

Number of exogenous constructs numExo 1, 2, 3
Number of endogenous constructs numEndo 1, 2, 3
Average number of items per construct aveItems 3, 4

Sample size sample 100, 300, 500
Construct reliability

Cronbach’s alpha level per construct alphaMean low, high
Variance of Cronbach’s alpha level alphaVar none, low, high

McCoach, 2003). More items lead to a higher-dimensional covariance matrix and can be used
to gain more degrees of freedom. Furthermore, model size effects can stem from the increase
in the model’s latent constructs (e.g., Breivik & Olsson, 2001) and the increase in items per
latent construct (e.g., Marsh et al., 1998). As model fit variation can stem from any of these
sources, model size is divided into three factors: the number of exogenous and endogenous
constructs and the average number of items per construct.
Sample size is is commonly used experimental factor in simulation studies (see, e.g., Li, 2016),
so it is also considered here.
Most of the time, homogeneous factor loadings are common in simulation studies (e.g., Flora
& Curran, 2004), but they are not common outside of simulations. Instead of fixating fac-
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tor loadings, the focus is set on Cronbach’s alpha levels. The reason for this choice is that
researchers use alpha level of constructs as criterion for the fit of the measurement model.
Therefore, it is of interest to see if the alpha level also influence the estimation method.

3.2 Estimation Accuracy

In this study, estimation accuracy of structural equation models refers to the discrepancy be-
tween estimated and true model components and is measured by computing mean absolute
relative errors (MARE). Using only one MARE as measure would be too broad, so not only
one, but three different MARE values are computed for each model: One value that considers
all path coefficients and factor loadings (MAREtotal), one value that considers only the path
coefficients (MAREpath), and one value that considers only the factor loadings (MARE f actor).

3.3 Generating Simulated Data

In the Monte Carlo study 324 different constellations are considered and, in total, 153,000
models are estimated. The overall simulation consists of the following steps: First, the true
values for each exogenous and endogenous construct for each respondent i from the sample
are calculated. Then, based on these constructs, the item values for each respondent i are cal-
culated. These items are rescaled and discretized to fit on a 7-point Likert-scale. Finally, the
components are estimated using all five estimation types and the three MARE values between
the true and estimated components are computed.

4 Major Findings

Two ANOVAs are performed: one with the three different MARE variants and one with the
logarithm of each MARE variant as the dependent variable. The R2 values were always higher
in the latter case, so ln(MARE) is chosen as evaluation criteria. A measure of prediction accu-
racy like ln(MARE) as dependent variable in an ANOVA results in negative coefficient show-
ing decreasing effects on estimation error. On the other hand, a positive coefficient points to-
ward an increasing estimation error. Furthermore, all factor coefficients have to be interpreted
relative to the respective reference levels, which are the first factor levels written in Table 1.
Table 2 depicts the main effects and interactions of the ANOVA. As a reading example: The
positive coefficients of estiMet ULS in Table 2 means that models estimated with ULS have
on average a higher total estimation error, higher errors in the path coefficients, and higher
errors in the factor loadings compared to models estimated with ML.

4.1 Main effects

First, the main effects concerning ln(MAREtotal) are described. The main effects of estima-
tion methods display only minor differences on estimation error: The use of ULS-estimation
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Table 2: Analysis of variance: coefficients of ln(MAREtotal) / ln(MAREpath) / ln(MARE f actor)
Predictor Coefficients Predictor Coefficients Predictor Coefficients

M
ai

n
ef

fe
ct

s (Intercept) -1.83 / -1.65 / -1.96 numExo 2 0.12 / 0.34 / -0.02 sample 400 -0.14 / -0.16 / -0.15
estiMet ULS 0.06 / 0.06 / 0.03 numExo 3 0.20 / 0.53 / -0.05 sample 500 -0.24 / -0.26 / -0.27
estiMet GLS 0.01 / 0.01 / 0.01 numEndo 2 0.49 / 1.09 / 0.04 alphaMean high -0.51 / -0.30 / -0.72
estiMet ULS-cat 0.02 / 0.10 / -0.05 numEndo 3 0.67 / 1.31 / 0.08 alphaVar low -0.03 / -0.05 / -0.04
estiMet DWLS-cat 0.00 / 0.10 / -0.07 aveItems 4 -0.02 / 0.05 / 0.06 alphaVar none -0.03 / -0.03 / -0.05

es
tiM

et
in

te
ra

ct
io

ns

ULS GLS ULS-cat DWLS-cat
numExo 2 0.00 / -0.04 / 0.05 0.02 / 0.02 / 0.02 -0.01 / -0.07 / 0.06 -0.02 / -0.07 / 0.03
numExo 3 0.00 / -0.08 / 0.08 0.04 / 0.03 / 0.04 -0.01 / -0.10 / 0.10 -0.03 / -0.10 / 0.06
numEndo 2 -0.07 / -0.10 / -0.01 0.01 / 0.00 / 0.03 -0.07 / -0.17 / -0.01 -0.06 / -0.16 / 0.00
numEndo 3 -0.09 / -0.11 / -0.02 0.05 / 0.04 / 0.07 -0.08 / -0.17 / -0.02 -0.06 / -0.16 / 0.00
aveItems 4 0.00 / -0.01 / -0.02 0.01 / 0.00 / 0.02 -0.01 / -0.01 / -0.03 -0.01 / -0.01 / -0.01
sample 400 -0.00 / -0.00 / -0.00 -0.01 / -0.01 / -0.02 0.00 / 0.01 / 0.00 0.00 / -0.01 / 0.00
sample 500 -0.01 / -0.00 / 0.00 -0.02 / -0.01 / -0.03 0.00 / 0.02 / 0.00 0.01 / 0.02 / 0.00
alphaMean high -0.00 / -0.02 / -0.06 -0.01 / 0.01 / 0.00 -0.03 / 0.01 / -0.05 -0.06 / 0.01 / -0.13
alphaVar low 0.00 / -0.00 / 0.01 -0.00 / -0.00 / 0.00 -0.01 / -0.04 / 0.00 -0.01 / -0.04 / 0.00
alphaVar none -0.00 / -0.01 / 0.00 -0.00 / -0.00 / -0.00 -0.02 / -0.05 / -0.00 -0.02 / -0.05 / 0.00

M
od

el
si

ze
in

te
ra

ct
io

ns numExo 2 numExo 3 numEndo 2 numEndo 3 aveItems 4
numEndo 2 -0.26 / -0.64 / 0.01 -0.43 / -0.99 / -0.01
numEndo 3 -0.28 / -0.59 / -0.02 -0.47 / -0.98 / 0.01
aveItems 4 0.02 / -0.02 / 0.01 0.04 / -0.01 / 0.02 -0.07 / -0.01 / -0.01 -0.10 / -0.01 / -0.01
sample 400 -0.01 / 0.02 / -0.00 -0.03 / -0.03 / 0.00 0.04 / 0.10 / -0.01 0.05 / 0.10 / -0.02 -0.02 / -0.02 / -0.02
sample 500 -0.03 / -0.01 / 0.01 -0.05 / -0.05 / 0.00 0.09 / 0.19 / -0.00 0.11 / 0.20 / -0.01 -0.02 / -0.01 / -0.02
alphaMean high -0.03 / -0.03 / 0.02 -0.04 / -0.07 / 0.06 0.20 / 0.25 / 0.00 0.26 / 0.29 / -0.03 -0.07 / -0.03 / -0.01
alphaVar low -0.00 / -0.01 / 0.00 -0.01 / -0.02 / -0.00 0.01 / 0.04 / 0.00 0.02 / 0.06 / 0.01 -0.01 / -0.01 / -0.02
alphaVar none -0.00 / -0.02 / 0.01 -0.01 / -0.02 / 0.00 0.01 / 0.05 / 0.00 0.02 / 0.05 / 0.01 -0.00 / -0.02 / 0.01

O
th

er
in

te
ra

ct
io

ns

sample 400 × alphaMean high 0.04 / 0.03 / 0.02
sample 500 × alphaMean high 0.04 / 0.02 / 0.02
sample 400 × alphaVar low 0.02 / 0.02 / 0.02
sample 500 × alphaVar low 0.04 / 0.02 / 0.02
sample 400 × alphaVar none 0.01 / -0.00 / 0.01
sample 500 × alphaVar none 0.01 / 0.00 / 0.02
alphaMean high × alphaVar low 0.02 / 0.01 / 0.03
alphaMean high × alphaVar none 0.02 / 0.01 / 0.03

bold indicates significance at α = 0.05

R2 = 0.62 / 0.46 / 0.57
Reading example: The main effect of ULS is 0.06 if ln(MAREtotal) is dependent variable, 0.06 for ln(MAREpath),
and 0.03 for ln(MARE f actor)

and surprisingly ULS-cat are slightly worse than any other estimation method, which do not
differ significantly from each other. Using more constructs will lead to higher estimation er-
rors. According to the standardized beta coefficients, this effect is much more prominent when
the number of endogenous constructs is increasing than in case of an increase of the number
of exogenous constructs. As expected, higher sample sizes lead to smaller estimation errors
and so does a higher mean level of Cronbach’s alpha. Interestingly, lower or no variances also
induce a smaller estimation error.
When analyzing the main effects of ln(MAREpath), ULS-cat und DWLS-cat have the high-
est main effect, closely followed by ULS. Using these methods leads to a higher estimation
error while GLS and ML do not differ significantly. All coefficients concerning model size
are significantly positive, which means larger models tend to have larger estimation errors,
regardless if there are more constructs or more items per construct. Again, the effect is more
pronounced in case of more endogenous constructs. Furthermore, as expected, larger sample
sizes and higher alphaMean levels with low variance lead to smaller estimation errors.
With the exception of estiMet, the main effects of ln(MARE f actor) are in line with the other
ANOVAS. Here, ULS-cat and DWLS-cat have the smallest estimation error, ULS the highest,
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and ML and GLS are in the middle. The main effects of numEndo and aveItems have the same
sign as in the other analyses, but numExo has negative coefficient, i.e., using more exogenous
constructs reduces the estimation error of factor loadings. Using a higher sample size and a
higher Cronbach’s alpha mean with low variance also yields smaller estimation errors.

4.2 estiMet interactions

Many interactions of the estiMet levels with other factors are significant, which shows that
estimation methods react differently to these factors. ULS is the estimation method that is in-
fluenced the least by other experimental factors. Here, higher numbers of exogenous items
lead to lower estimation errors among the path coefficients, but higher errors among the fac-
tor loadings. In contrast, more endogenous constructs always yield lower estimation errors in
all parts of the model. If GLS is used, every kind of estimation error gets bigger with larger
models. For ULS-cat and DWLS-cat, the interactions with other experimental factors are very
similar. Larger models lead to a lower estimation error among path coefficients and higher es-
timation errors among factor loadings. As shown by ln(MAREtotal), the overall effect of larger
models is a reduction of the estimation error. Both ULS-cat and DWLS-cat also interact with
the construct reliability factors. Interestingly, while a higher mean of Cronbach’s alpha leads
to lower estimation errors among the factor loadings, lower or no variances in the alphas lead
to lower estimation errors among path coefficients.

4.3 Model size interactions

The next part of Table 2 depicts the interactions of the model size factors with the other fac-
tors. The interactions between the number of different construct types are significant and have
the opposite sign as both of their respective main effects. As a consequence, an increase of
model size has subadditive effects, i.e., the estimation error will rise but less than linear. Fur-
thermore, the interactions of numExo are negative for errors among path coefficients and pos-
itive for errors among factor loadings, while the interactions of numEndo carry the opposite
sign and have a larger absolute value. This shows that the estimation errors react very differ-
ently if the number of either type of constructs is altered.

4.4 Construct reliability

The general result is that a high Cronbach’s alpha level supports good estimation accuracy.
That in itself is not surprising. Interestingly, having a low or no variance in alpha levels also
helps in reducing the estimation error, albeit this effect is not as strong as having a high mean.
For path coefficients, the reduction of estimation errors from low or no alpha level variance
is larger if ULS-cat or DWLS-cat is used. Furthermore, alphaMean often interacts with model
size factors. In models with many exogenous constructs, having a high mean alpha level and/or
a low alpha level variance can improve the estimation errors on path coefficients. In models
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with many endogenous constructs, on the other hand, the alpha level only has a small or no
influence on estimation accuracy. When estimation errors of factor loadings are important,
for instance in confirmatory factor analyses, then having a high alpha level is essential, as
can be seen by the coefficient. Most of the estimation methods (except ML and GLS) further
strengthen this influence. The impact of a high alpha level is reduced in models with many
exogenous factors and enhanced in models with many endogenous factors.

4.5 Total effects of the estimation methods

Figure 1: 95% confidence intervals of total effects concerning ln(MAREtotal)
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As can be seen in Table 2, the estimation methods often interact with the different model size
factors. Furthermore, the signs and absolute values of these interactions vary to a large ex-
tent. To get a whole picture of these scenarios is difficult, so the total effects, i.e., the sum of
the main effects and significant pairwise interactions, of estiMet, numExo, and numEndo, are
investigated. The factor aveItems is not varied because its interactions are often small or not
significant. All other factors are kept at their respective reference categories. Figures 1, 2, and
3 show the 95% confidence intervals of the total effects under several different model size fac-
tor combinations. The lower the estimation errors of a total effect, the more appropriate is the
corresponding estimation method in the constellation.
Figure 1 shows the 95% confidence intervals concerning ln(MAREtotal). In case of only one
exogenous and one endogenous construct, ML, GLS as well as DWLS-cat are the best possi-
ble estimation methods, because their confidence intervals indicate that the estimation errors
are the smallest ones. If the number of endogenous constructs are kept constant at 1 and the
number of exogenous constructs increase (first row), ML and GLS become worse. As a conse-
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Figure 2: 95% confidence intervals of total effects concerning ln(MAREpath)
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quence, in these constellations, DWLS-cat should be used. If the model consists of more than
1 endogenous construct, but less than 3 exogenous constructs (the four constellations in sec-
ond and third row and first and second column), than ULS-cat and DWLS-cat are clearly the
preferred estimation methods. If the model consists of 3 exogenous and more than 1 endoge-
nous construct (third column), it is not easy to give a recommendation. DWLS-cat is clearly
better in both constellation than GLS, because both confidence intervals are disjoint. This is
also the case for ULS-cat and GLS in case of 3 exogenous and 3 endogenous constructs. As
a consequence, the application of DWLS in both cases and ULS-cat in case of 3 endogenous
constructs would be recommended.
In Figure 2, the estimation error of path coefficients is the dependent variable. One clearly
distinguished case is the scenario of only 1 exogenous and 1 endogenous construct. Here,
ML and GLS are the best possible estimation methods, because their confidence intervals
are disjoint from those of the other estimation methods while retaining the lowest estima-
tion errors. On the other hand, when only the number of exogenous constructs increases (first
row), the estimation methods are not distinguishable, because all confidence intervals over-
lap. The scenario with 1 exogenous and 2 endogenous construct is also ambiguous; it can only
be said, that ML is worse than ULS-cat or DWLS-cat. If the number of both construct types
increases, the differences between the estimation methods become more pronounced. ULS-
cat and DWLS-cat both become the best estimation methods, while ML and GLS become the
worst to apply. The accuracy of ULS is highly dependent on the combination. If numEndo =
2, then the estimation errors of ULS is between ML/GLS and ULS-cat/DWLS-cat, but if nu-
mEndo = 3, then ULS is not distinguishable from ULS-cat or DWLS-cat.
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Figure 3: 95% confidence intervals of total effects concerning ln(MARE f actor)
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Figure 4: Guideline for choosing appropriate the estima-
tion method
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In Figure 3, ln(MARE f actor) is
the dependent variable. If there
is only one exogenous construct
(first column), ULS-cat and
DWLS-cat are clearly superior to
the other three estimation meth-
ods. ML, ULS and GLS do not
differ much (numEndo = 1 or 2),
or ML and ULS are better than
GLS (numEndo = 3). If the num-
ber of exogenous constructs is
2 (middle column), DWLS-cat
is the best estimation method.
The other estimation methods
perform similar to each other, as
their confidence intervals over-
lap most of the time. Only ML
performs clearly better than ULS
(numEndo = 1 or 2) or GLS (nu-
mEndo = 3). Finally, in the last column, ML und DWLS-cat have the lowest estimation errors.
Overall, ULS is almost always among the estimation method with the highest estimation error,
while DWLS-cat (and ML if numExo = 3) is among the best.
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5 Conclusions

This study evaluates the effects of five different estimation methods on estimation accuracy in
structural equation models and the interaction with model size. ML, ULS, GLS, ULS-cat, and
DWLS-cat are investigated and used as one experimental factor while model size is split into
three factors. Furthermore, several other important aspects of structural equation modeling are
also captured in experimental factors: sample size, and the construct reliability. To evaluate
the estimation accuracy, three kinds of MARE are used. The results show that with different
model sizes different estimation methods are optimal. An analysis of the total effects deliv-
ers different appropriate estimation methods for different model sizes. Figure 4 summarizes
these findings and should guide researchers to the best estimation method of their model. Most
of the time, DWLS-cat is among the best estimation methods. But for the majority of mod-
els, other estimation methods perform as well as DWLS-cat. For larger models models, ULS
(ML) can be a viable alternative if path coefficients (factor loadings) are of the essence for the
researcher.
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