
 

 

Causal impact of digital display ads on advertiser performance

 

Koen Pauwels
Amazon Ads

Manuele Caddeo
Amazon Ads

German Schnaidt
Amazon Ads

 

 

 

Cite as:
Pauwels Koen, Caddeo Manuele, Schnaidt German (2022), Causal impact of digital display ads on
advertiser performance. Proceedings of the European Marketing Academy, 51st, (108183)

 

 



   
 

   
Amazon Confidential 1 

Causal impact of digital display ads on advertiser performance 
 
Abstract: Brands are searching for innovative ways to reach customers online. Sponsored Display 

(SD) by Amazon Ads is a new way to do so, and allows targeting by category, product and audience. 

However, advertisers are uncertain how much SD improves their performance over different time 

horizons. This paper studies more than 40,000 brands with two different methods: a diffusion-

regression state-space time-series analysis that predicts response counterfactuals during a 20-weeks 

period post SD adoption of audience targeting, and a newly developed Two-stage Gaussian Process 

algorithm that generates probabilistically-equivalent twins for causal inference in a shorter time 

frame of 1 month post SD adoption of category and product targeting. The performance variables 

include impressions, page views, sales, new-to-brand consumers and Return on Advertising Spend. 

The results are consistent and quantify how much adding SD to the ad mix increases performance. 

 
Keywords: display advertising, machine learning, causal inference 
 
Track: Digital Marketing and Social Media 
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1. Objectives and Overview of the Research 
Digital marketplaces have continued to grow over recent years, with the Amazon marketplace 

bringing together over 1.9 million independent suppliers with over 100 million Amazon Prime 

customers in addition to non-Prime customers (Rangaswamy et al. 2020). Likewise, digital 

advertising effectiveness and its causal attribution have seen strong research attention. However, 

advertisers are regularly offered new ways to reach audiences online and are uncertain how much 

such digital ads can improve their different performance measures over different time horizons.  

Display ads are online ads that combine copy and visual elements with a call-to-action message 

that links to a landing page. Consumers typically see display ads along the top or sides of a 

website—or sometimes, in the middle of the content they are reading. Recently, Amazon.com 

introduced Sponsored Display (SD) based on three potential audience strategies: the category the 

consumer is browsing in, the specific product and the audience remarketing to customers who 

browsed the product in the past. These three strategies are not mutually exclusive, instead they can 

be combined to engage with customers who are exploring products within a category, or evaluating 

a specific product, or re-engage those who have browsed specific products without making a 

purchase to help ensure missed sales opportunities. Digital advertisers are uncertain to what extent 

these SD strategies drive performance variables such as impressions, Buy Box detailed page views 

(i.e., visits to the product pages), sales and new-to-brand consumers (i.e., consumer who have not 

bought the brand in the previous year on Amazon.com). In particular, they want to know how they 

can use SD to add to their current portfolio of Sponsored Products (SP), i.e., ads showing individual 

products to Amazon shoppers in related shopping results and product pages, and Sponsored Brands 

(SB), ads showcasing the advertiser’s brand to Amazon shoppers in related shopping results and 

product pages (Amazon Learning Console 2021). While SP is widely seen as a bottom-funnel tactic 

and SB as a mid-funnel tactic, SD is considered an upper-funnel tactic, which may increase the 

customer base and sales over the longer run, but can decrease efficiency, typically measured as 

Return on Advertising Spend (Robb 2021). 

To measure the performance impact of SD strategies over different time horizons, we use two 

different, complementary methodologies. First, we estimate a diffusion-regression state-space 

model that predicts the counterfactual response that would have occurred over a 20-week look 

forward horizon had the advertiser not adopted audience targeting SD. Second, we apply a 2-stage 

Gaussian Process algorithm that generates probabilistically-equivalent counterfactuals to evaluate 
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the impact of SD adoption among advertisers using category and product SD strategies over a 1-

month time horizon after enabling SD.  

 The results are consistent. The counterfactual time series analysis shows that advertisers 

activating SD with audience targeting for the first-time increased sales by +14% on average within 

the first 20 weeks after adopting SD as compared to not enabling SD. The 2-stage Gaussian Process 

shows that brands that began using category targeting in SD strategies for the first time saw, on 

average, positive impacts across different metrics during the next month after adoption as compared 

to advertisers that didn’t: +33.9% more impressions, a +3.6% increase in Buy Box Detailed Page 

Views (DPV) and a +2.6% increase in New-To-Brand (NTB) customers. Similarly, Brands that 

created an SD product targeting campaign for the first time saw, on average, increases of +28.8% 

in sales, +12.4% in DPV, +3.2% in NTB customers’ awareness, and +4.2% in NTB customers’ 

consideration the following month, compared to brands that did not.  

 

2. Methodology  

2.1 Diffusion-regression state space model 

In contrast to difference-in-differences schemes (Lechner 2011), state-space models allow 

inferences about the temporal evolutions of attributable impact, and flexibly accommodate multiple 

sources of variation, including the time-varying influence of contemporaneous covariates, local and 

linear trends, and seasonality components. In addition, these models can adopt a fully Bayesian 

nature by incorporating empirical priors on the model parameters which adds extra flexibility and 

robustness to the analysis. In this context, for the first part of our analysis we applied a Bayesian 

Structural Time Series Model (Brodersen et al. 2015). We selected 284 advertisers that satisfied the 

following conditions within a 50-week timeframe: (1) advertisers were active SP and/or SB for at 

least 30 weeks prior to SD Audience Targeting activation, (2) in the last 20 weeks of the analyzed 

time period, the only advertising-specific action they took was launching an SD Audience Targeting 

campaign, and (3) advertisers should be similar in term of business size and ad-campaign activity. 

Finally, we selected advertisers with ad-support sales higher than 5-th percentile in SD to prevent 

skewing our results towards those advertisers that are still in a test-and-learn phase for these ads. 

For the selected advertisers, we calculated the impact on sales during the 20 weeks following 

their SD-Audience activation by predicting how their sales would have evolved if the SD-Audience 

activation had not occurred. We trained our model the first 30 weeks (pre-SD adoption period) to 
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predict the counterfactual response for the following 20 weeks (post-SD adoption), using 10 

additional covariates including sales, units, glance views, etc. at a vertical aggregation level and 

compares the same covariates for 600 advertisers that never activated SD within the same 

timeframe. Finally, we measured the lift in sales by subtracting the observed sales (real value) from 

the counterfactual sales (predicted sales).   

 

2.2 Two-stage Gaussian Process Machine Learning Model 

 Second, to measure a shorter-term causal impact (i.e., 1-month post-activation) on 

advertisers who adopted SD product targeting and SD category targeting for the first time, we took 

inspiration from the causal inference machine learning domain (Alaa and Van der Schaar 2018), 

and selected 43,720 advertisers in the US marketplace. Our analysis is based on a method recently 

developed by Amazon Ads Scientists called 2-stage GP (2-stage Gaussian Process) that shows 

improved performance on various metrics (e.g., placebo test, RMSE, etc.) when applied within the 

context of advertising as compared to existing state-of-the-art methodologies such as Double 

Machine Learning (Chernozhukov et al 2018) and Causal Forests (Wager and Athey 2018). This 

proprietary Amazon Ads algorithm generates adaptive weights that are used to construct 

counterfactuals for each advertiser that adopted an ad product for the first time (e.g., SD) and then 

uses the pairs {observed, counterfactual} to estimate the causal impact this intervention. These 

adaptive weights result from statistical similarities between treatment and control populations 

spanned by the 50+ features we used to account for confounding (retail and advertising related). 

For every treated advertiser, the algorithm generates its counterfactual as an adaptive linear 

combination of the un-treated units.  

Our 2-stage GP method builds upon the idea that treatment effects can be modeled as non-linear 

functions of factors 𝑥! ∈ 𝑅" (i.e., attributes that in our problem describe the advertiser 

characteristics), motivated by the flexibility and estimation properties of GPs as seen in different 

applications in Machine Learning (ML) such as Regression, Smoothing, and Experiments.  

2.3 Two-stage GP Algorithm specification 

Let Y#(x#)(%!) represent the target response (e.g., sales) for which we want to measure the impact 

of a specific action (e.g., SD adoption), conditional on a vector of control variables 𝒙𝒊 ∈ 𝑅". Also, 

let 𝑤! ∈ {0,1} be an indicator variable for a binary treatment assignment (𝑤! = 1 denotes sample 𝑖 
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has taken the action, whereas 𝑤! = 0 denotes the opposite). Suppose the relation between 

𝑌!(𝐱𝐢)()"), 𝑤! and 𝒙𝒊	has the following form: 

𝑌!(𝑥!)()") = 𝑓*(𝑥!) + 𝑓+(𝑥!) ⋅ 𝑤! + ϵ! ,					(1) 

where ϵ! are random errors satisfying 𝐶𝑜𝑣(𝜖! , ϵ,|𝒙𝒊, 𝑤!) = 0, ∀𝑖 ≠ 𝑗, 𝐸[ϵ!|𝑥! , 𝑤!] = 0,

𝑎𝑛𝑑	𝑉𝑎𝑟[ϵ!|𝑥! , 𝑤!] = σ-; 𝑓*(⋅), 𝑓+(⋅) are (possibly) non-linear functions that depend on the control 

variables 𝒙𝒊 ∈ 𝑅" . Under strong-ignorability assumptions, we can show that 𝑓+(⋅)	represents the 

effect of the action as a function of the advertiser characteristics (i.e., the Conditional Average 

Treatment Effect or CATE). Once we have estimated 𝑓*J(⋅) and 𝑓+J(⋅) from an independent, 

identically distributed (iid) dataset {(𝑌! , 𝑋! ,𝑊!)}!.+/ ,	we can obtain the ATE as 𝛾N = +
/
∑ 𝑓+J(𝒙𝒊)/
!.+ . 

Now we introduce Gaussian Processes (GPs) into the previously described setting. Suppose that 

for w ∈ {0,1} we can model each function in Equation (1) as 𝑓)(𝒙) ∼ 𝐺𝑃 T0 ,  𝑘0𝒘(𝒙, 𝒙
1)W. Then, 

we can describe each observed target outcome 𝑌!(𝐱𝐢)()")	by: 

𝑌!(𝑥!)()".*) ∼ 𝐺𝑃 T0 ,  σ- + 𝑘2$(𝑥! , 𝑥!)W  and	𝑌!(𝒙𝒊)()".+) − f*(x) ∼ 𝐺𝑃 T0 ,  τ- + 𝑘0𝟏(𝒙𝒊, 𝒙𝒊)W	(2) 

Where 𝐺𝑃(µ, Σ) denotes a Gaussian Process with mean µ and Variance Σ, and 𝑘2&(𝑥, 𝑥
1): 𝑅" ×

𝑅" → 𝑅3 represents a kernel with parameters specified by β) ∈ β ⊂ 𝑅4, and σ,  	τ denote 

additional noise parameters in the model that account for unexplained variability in the data. From 

the above definition, and by splitting the sample according to the treatment indicator 𝑤! ,  𝑖 =

1,… ,𝑁, we can structure our data as follows: 𝑌(5.*), 𝑌(5.+),  𝑋(5.*), and 𝑋(5.+). These 

represent the response vectors for untreated and treated with dimensions 𝑁6 and 𝑁7, and the control 

variables matrices for untreated and treated with dimensions 𝑁6 × 𝑁6 and 𝑁7 × 𝑁7, respectively. 

Here 𝑁 = 𝑁6 + 𝑁7. Using this structure, for a new advertiser with characteristics 𝐱𝐧𝐞𝐰 the CATE, 

conditional on the observed sample {(𝑌! , 𝑿𝒊,𝑊!)}!.+/ , is given by: 

 

f+J(x;<%) = k2'∗
= gx;<%, X(>.+)i TK2'∗ gX

(>.+)i + τ∗)k𝐈𝐍𝐭W
A+
𝐑(𝐖.𝟏),																								(3) 

 
where 𝑹(𝑾.𝟏) = 𝒀(𝑾.𝟏) − 𝒇r𝟎g𝑿(𝑾.𝟏)i. Here, 𝑘2&∗

F g𝑥GH) , 𝑋(5.))i
!
= 𝑘) T𝑥GH) , 𝑥!

()".))W , 𝑖 =

1,… ,𝑁)  and	𝑰𝑵𝒘 denotes the identity matrix. Note that the model is completely specified by the 
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optimal parameters τ∗ and β)∗  obtained by maximizing the likelihood of 𝑌(5) as a function of (β), 

𝜏), conditional on the observed sample. 

 

2.4  Intuition About the Bias Correction Induced by the Two-stage GP Method 

As seen in Equation (3), the expression for the treatment effect function 𝑓+J(⋅) depends on the 

residual vector 𝑅(5.+), that in turn, depends on 𝑓u*(⋅). This translates into the following 

representation for the CATE function 𝑓u+(⋅): 

𝑓+J(𝒙𝒏𝒆𝒘) = 𝑓+v(𝒙𝒏𝒆𝒘; β∗) − 𝑓*,+k (𝒙𝒏𝒆𝒘; β∗).																													(4) 

where 𝑓+v(⋅) corresponds to a function that depends only the treated samples, and β∗ = [β+∗  β*∗ ] 

denotes the stacked vector of kernel parameters for 𝑓+(⋅)	𝑎𝑛𝑑	𝑓*(⋅), respectively. Writing down 

the term 𝑓*,+k (𝒙𝒏𝒆𝒘; 𝜷∗)	in Equation (4) and using results from Equation (3), it follows: 

𝑓*,+k (𝑥GH); β∗)

= 𝑘2'∗
F g𝑥GH) , 𝑋(5.+)i𝐾2'∗{ g𝑋(5.+)i

A+
𝑲0𝟎∗g𝑋

(5.+), 𝑋(5.*)i𝐾2$∗{ g𝑋(5.*)i
A+
𝒀(𝑾.𝟎).									(5) 

Here, 𝐾2'∗{ g𝑋(5.+)i = 𝐾2'∗g𝑋
(5.+)i + τ∗)k𝑰𝑵𝒕 . As Equation (5) shows,  𝑓*,+k (𝒙𝒏𝒆𝒘; 𝜷∗)	is a linear 

combination of the observed target responses for the non-treated population (i.e., 𝒀(𝑾.𝟎)), with 

weights determined by three components: (1) The kernel-based similarity between the new 

advertiser characteristics 𝑥GH) and the observed treated samples 𝑋(5.+); (2) The kernel-based 

similarity between the observed treated sample 𝑿(𝑾.𝟏)	and the non-treated population 𝑿(𝑾.𝟎) 

spanned by the cross-covariance term 𝐾2$∗g𝑋
(5.+), 𝑋(5.*)i; finally, (3) The intra-population 

dependence for treated and untreated groups that is contained in the corresponding precision 

matrices 𝐾2&∗{ g𝑋(5.))i
A+
,   𝑤 ∈ {0,1}. This representation can be interpreted as an adaptive 

matching that takes place on the high-dimensional space induced by the kernel functions.  

As an alternative, we can represent the estimator in Equation (4) as: 

𝑓+J(𝑥GH)) = ~ αT𝑥GH); 𝑋!
(+)W T𝑌!

(+) − 𝑌N
(*){ W

!∈𝒮𝒯

,        (6) 

where 𝒮𝒯 represents the treated sample, αT𝑥GH); 𝑋!
(+)W ≥ 0 are weights that account for the 

similarity between the new observed sample 𝒙𝒏𝒆𝒘 and observed treated samples in 𝒮𝒯, and 𝑌N
(*){  
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denotes the 𝑖 − 𝑡ℎ treated sample counterfactual. This counterfactual is constructed as a feature-

dependent linear combination of the observed non-treated responses as 𝑌N
(*){ =

∑ 𝑘0𝟎∗T𝑋!
(+), 𝑋R

(*)WR∈𝒮𝒞 ⋅ 𝑌R
(*) , where 𝑌R

(*) are the observed non-treated responses and 

𝑘0𝟎∗T𝑿𝒊
(𝟏), 𝑿𝒋

(𝟎)W	corresponds to the 𝑖 − 𝑡ℎ	row of the translation matrix 𝐻0𝟎∗∗g𝑋
(+), 𝑋(*)i =

𝐾0𝟎∗g𝑋
(+), 𝑋(*)i𝐾0𝟎∗

A+{ g𝑋(*)i that projects the observed treated samples into the non-treated space by 

adaptively allocating adaptive weights. This process resembles a synthetic control but with the 

difference that the weights are constructed by leveraging the probabilistic relationship between 𝑌 

and 𝑋 given by the GP. 

2.5 Benchmarking of the Two-stage GP Method Using Synthetic Data 

We compare Two-stage GP with competing algorithms using the Infant Health and Development 

Program (IHDP) dataset. This dataset has been used for evaluating Causal Models (Alaa and Van 

der Schaar 2018). In all the evaluations, CMGP and 2-GP are fitted using a “Radial Basis Function” 

(RBF) Kernel with Automatic Relevance Determination (ARD). We refer to each model as: Causal 

Forests (CF), Double Machine Learning with Partially Linear Model (DML, rf_dml), Causal 

Multitask Gaussian Processes (CMGP), and Linear Regression with Propensity Scores and 

Bootstrapping (lin_boots). We estimate the Average Treatment Effect (ATE) to identify an 

approach that achieves low Root Mean Squared Error (RMSE) and is robust to small sample sizes.  
Figure 1: Boxplots of Error in 50th Percentile 
Estimated DSI across 100 replications for IHDP 
dataset, N=700. 

 

Figure 2: RMSE plots for 50th Percentile DSI 
estimation across 100 replications for IHDP 
dataset.

 

Figure 3: Histogram plots for 50th percentile DSI 
estimation using IHDP dataset (100 replications), 
N=739. 

 

Our results show that Gaussian Processes-based methods perform best with respect to IHDP (and 

also in Amazon-based synthetic data, and the back-shifted placebo test) when sample sizes are 

below 1,000. Although CMGP stands out as the best method in those scenarios, it comes at a high 

computational cost due to its Kernel structure. The fact that Two-Stage GP offers computational 
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savings by using a simpler Kernel structure, and is flexible to be adapted to other use cases with 

little performance tradeoffs makes it a better candidate to be used at scale. 

 

3. Major Results 
 

In our analysis we used data between April 2020 and June 2021. As to model-free evidence, 

Figure 4 below compares the Year-over-Year (YoY) growth of brands combining SD with SP and 

SB vs. those using SP + SB (which we considered the baseline). The left panel shows: (a) Total 

Sales, and (b) Total Ad-attributed Sales Year-over-Year (YoY) growth. The right panel shows the 

Return on Advertising Spending (ROAS), i.e., the $ sales revenue earned for each $1 spend on 

advertising. Brands combining SP + SB + SD generated +16% more in total sales and +25% more 

in ad-attributed sales, respectively, vs. brands using SP only, and they achieved +2.6 higher ROAS. 

Thus, adding Sponsored Display audience targeting (an upper-funnel tactic) to the existing lower- 

and mid-funnel tactics, is associated with higher sales growth (effectiveness) without decreasing 

efficiency (as measured by ROAS), answering a key advertiser question.  
 

Figure 4: Higher performance for advertisers who added Sponsored Display (Model-free) 
 

 
 

From a medium term impact perspective, in our counterfactual causal analysis, the 284 

advertisers that adopted SD with audience targeting saw, on average, a +14% increase in total sales 

in the following 20 weeks, compared to their estimated sales without SD adoption. Figure 5 shows 

on the left panel that the model works well predicting the average baseline of actual sales (i.e., 

weeks -30 to 0 in the horizontal dotted line) and on the right side the impact of adding SD to SP+SB 

during the 20 weeks post SD adoption. The posterior probability of a causal effect is 99.1%. We 

performed validation separately with posterior tail area probability of p=0.009. 
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Figure 5: Incremental sales from adopting Sponsored Display Audience vs. counterfactual baseline 

 
 

 Finally, using our Two-stage GP method we estimated the impact of adding SD over the 

next month post SD adoption. Brands that began using category targeting within SD strategies for 

the first time saw, on average, +33.9% more impressions, a +3.6% increase in Detailed Page Views 

and a +2.6% increase in New-To-Brand customers the following month compared to those that 

didn’t. Similarly, brands that created an SD product targeting campaign for the first time saw, on 

average, a +28.8% sales increase, +4.2% DPV increase and a +2.6% NTB increase the next month 

compared to those that didn’t. Figure 6 summarizes these results We measured the statistical 

significance with a 5% significance level of these estimates using a bootstrapping procedure. 

 

Figure 6: Two-stage Gaussian Process estimates of Sponsored Display Targeting’s impact. 
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4. Implications:  Incorporate Sponsored Display strategies in digital advertising  

Using a multi-method approach, we conclude that brands that incorporated Sponsored Display 

experienced increases in total sales ranging from +10% to +29%, as well as increases in 

impressions, Detailed Page Views, New-to-Brand customers, ad-attributed sales, and Return on 

Advertising Spend (ROAS), compared to brands that only use Sponsored Products, or Sponsored 

Products and Sponsored Brands on Amazon.com. Based on these results, we recommend that 

advertisers incorporate Sponsored Display to their media plans. We also recommend that brands 

consider using multiple SD tactics, such as audience, category and product targeting. Future 

research is needed to explicitly compare audience with category and product targeting, and to 

quantify how combinations of these approaches are best for advertisers under different conditions, 

such as category and brand characteristics (e.g. consumer involvement and brand strength). 
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