
 

 

Black-Box Emotion Detection: On the Variability and Predictive
Accuracy of Automated Emotion Detection Algorithms 

 

Francesc Busquet
University of St Gallen
Christian Hildebrand
University of St. Gallen

 

 

 

Cite as:
Busquet Francesc, Hildebrand Christian (2020), Black-Box Emotion Detection: On the
Variability and Predictive Accuracy of Automated Emotion Detection Algorithms .
Proceedings of the European Marketing Academy, 49th, (64028)

 

 



1 

Black-Box Emotion Detection: On the Variability and Predictive 

Accuracy of Automated Emotion Detection Algorithms  

 

 

Abstract 

The ubiquitous availability of image data, advances in cloud-computing, and recent 

developments in classification algorithms gave rise to a new class of automated emotion 

detection systems which claim to perform accurate emotion detection from faces at scale. In 

this research, we provide a tightly controlled validation study using pretrained emotion 

detection algorithms of the Google ML, Microsoft Cognitive Service, GfK EmoScan, and 

other platforms to test the robustness and consistency across and within current emotion 

detection systems. Our results demonstrate considerable variability in predictive validity 

across emotion detection systems, high variability across different types of discrete 

emotions with strong positive emotions (such as an open mouth smile) being easier to 

classify compared to negative emotions such as anger or fear, and we detect sizable positive 

correlations of theoretically opposite emotions (such as surprise and fear). We provide two 

modeling strategies to improve prediction accuracy by either combining feature sets or by 

averaging across emotion detection systems using ensemble methods.     
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Black-Box Emotion Detection: On the Variability and Predictive 

Accuracy of Automated Emotion Detection Algorithms 

 

Extended Abstract 

 1. Introduction  

Automated emotion detection from facial expressions refers to the use of algorithms 

that detect facial landmarks in pictures to classify people’s discrete emotions (Liu et al. 

2014). These automated emotion detection systems classify discrete positive emotions such 

as happiness or surprise to negative emotions such as anger and fear. A computer vision 

algorithm first identifies facial landmarks in a picture and then assigns each picture a 

discrete emotion label based on the features or composition of the existing facial 

landmarks. Companies such as Microsoft, Google, or GfK provide platforms to perform 

such automated emotion detection with recent industry reports suggesting a CAGR of 

32.7% and a market size of 25 billion by 2020, highlighting the importance and dominance 

of these AI-powered technologies for the future of marketing.  

Despite the increasing availability of automated emotion detection systems, 

fundamental methodological questions arise. Are automated emotion detection systems 

valid? Is the same picture classified correctly across emotion detection systems? These 

questions are important as emotion detection systems are using pre-trained algorithms to 

classify discrete emotions from facial expressions in a way that is unknown to the user of 

these systems. Thus, it is likely that the same picture is assigned a different discrete 

emotion conditional on the type of emotion detection system being used. To the best of our 

knowledge, both a formal test of this hypothesis is non-existent as is a formal analysis that 

unravels under which conditions emotion detection algorithms would increase in predictive 

accuracy.  

 

 2. Theoretical Background  

Emotion detection from facial expression has been studied predominantly in 

computer vision and pattern recognition. One of the first lines of research was concerned 
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with the high dimensionality of facial images, or more specifically the facial features in 

images. Thus, the majority of prior work was focused on dimensionality reduction 

techniques beginning with distances and ratios among feature points (Kanade 1973) and 

moving towards more complex methods such as autoencoder networks (Cottrell and 

Metcalfe 1991) or principal components (Padgett and Cottrell 1997) or, more recently, 

signal processing methods such as Gabon filters (Bashyal and Venayagamoorthy 2008). 

Yu and Zhang (Yu and Zhang 2015) provide evidence that automated emotion 

detection models reach a 61.29% accuracy on the test set using a multiple deep network 

learning, while Levi and Hassner (Levi and Hassner 2015) achieved a 54.56% by using 

Convolutional Neural Networks and so called mapped binary patterns. Even though the 

accuracy seems similar, results are hardly comparable across studies due to differences in 

stimuli (i.e., pictures) and modeling techniques (deep neural networks vs. binary patterns). 

Taken together, due to varying stimuli and methods being used, the current research on 

automated emotion detection systems provides mixed evidence on the effectiveness across 

discrete emotions and the dependence on the modeling strategy used. The current paper fills 

this gap by providing a tightly controlled validation study comparing the effectiveness (i.e., 

in terms of predictive accuracy) of a variety of automated emotion detection systems across 

discrete emotions, dependencies on the modeling technique being used, the stimuli set, and 

ways to improve predictive accuracy by combining feature sets or using ensemble methods. 

 

 3. Dataset  

We used a standardized picture set with objective ground truth, i.e. knowledge about 

the discrete emotion that is displayed by actors in a standardized picture set. Specifically, 

we used the Chicago face database (Ma, Correll, and Wittenbrink 2015) to evaluate 

automated emotion detection systems. The Chicago face database contains photos from 597 

male and female targets of varying ethnicity between 18 and 40 years under standardized 

conditions. For a subset of 158 targets, images display either a neutral, angry, fearful, or 

two positive emotional states (happy face with either an open or closed mouth).  
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Each of these images of the 158 subjects displaying various emotions was classified 

using a variety of emotion detection Application Programming Interfaces (API): Microsoft 

Cognitive Services, Google ML, Sightcorp, Kairos, and the GfK EmoScan. The data was 

normalized across emotion detection systems to provide meaningful comparisons across 

APIs.  

 

 4. Baseline: Accuracy of Single Predictor Models  

To set a baseline, we evaluated the effectiveness of the different APIs by taking only 

a single variable to predict emotion labels. We trained a multinomial logit model to predict 

each discrete emotion across APIs. Prediction accuracy varied moderately from 49% to 

58% with Google’s API performing best, achieving a test accuracy of 58.94% and a test 

Kappa of 40.25% (mean CV accuracy of 58.04% and mean CV Kappa of 39.17%). On the 

contrary, GfK EmoScan realized the lowest predictive accuracy with a test sample accuracy 

of 49.81% and a test Kappa of 36.88% (mean CV accuracy of 48.25% and mean CV Kappa 

of 34.75%). This difference stems primarily mainly from a greater predictive power of the 

neutral class by the predictions done using Google ML (80.34% balanced test accuracy on 

neutral class, while the GFK EmoScan model presents a 70.19% balanced test accuracy for 

that class).  

Positive emotions were predicted consistently better across APIs while we observed 

substantial variation across negative emotions (standard deviation of the balanced 

accuracies across emotion detection systems: σhappy open = 3.81, σneutral = 6.89, σfear = 14.98, 

σanger = 30.9). Likewise, we observe substantial variation in intraclass correlations 

(correlations of emotion detection systems within each discrete emotion, i.e. correlation of 

happiness measures, anger measures etc.) with r = 0.82 for happiness, while only r = -0.239 

for sadness, r = -0.08 for surprise, r = -0.176 for anger and r = -0.109 for disgust, 

respectively. Moreover, the predictive power of the different APIs for negative emotions 

was significantly lower than for positive and neutral emotions (average balanced accuracy 

for the different emotion classes: µhappy open = 78.97, µneutral = 79.97, µfear = 65.45, µanger = 

44.3). 



5 

 5. Within API Accuracy 

To expand the previous results, a subsequent analysis sued the entire feature set for 

each emotion detection system (i.e., API). The results demonstrate that by including 

additional features, all APIs yielded significantly greater predictive accuracy. For example, 

the best performing model (Microsoft Cognitive Services) achieved a test accuracy of 

82.89% and a test Kappa of 76.81% (mean CV accuracy of 82.01% and mean CV Kappa of 

75.77% across all emotion detection APIs).  

Incorporating additional features increased the predictive power also of negative 

discrete emotions. Yet, we still observed systematically greater variation in accuracy 

measures for negative compared to positive discrete emotions (σhappy open = 3.84, σneutral = 

9.96, σfear = 21.54, σanger = 15.5). 

 6. Accuracy Improvement 1: Model Averaging Across APIs & Feature Combination  

How can we further improve the predictive accuracy of a model? One option is to 

increase the feature space by combining the entire set of features across all APIs. The 

second option is to use more flexible estimation techniques. Specifically, recent advances in 

deep learning might further improve predictive performance by increasing the number of 

layers and / or boosting a model by aiming at predicting misclassified cases. With respect to 

the first option of combining feature sets, our results highlight that the obtained test 

accuracy improved further with a mean CV accuracy of 85.73% and mean CV Kappa of 

81.02%. 

 7. Accuracy Improvement 2: Flexible Estimation Techniques 

Next, we aimed at further improving prediction accuracy by using more flexible 

estimation techniques. Parameters were selected through grid search in the parameter space. 

Lowest performance was achieved by Support Vector Machines with radial basis kernel 

resulting in a test accuracy of 84.41% and a test Kappa of 79.33% (mean CV accuracy of 

83.47% and mean CV Kappa of 78.05%). Highest performance was achieved by using 

Random Forests and LogitBoost achieving 92.02% test accuracy, 89.25% test kappa (mean 

CV accuracy of 90.75% and mean CV kappa of 87.62%) and 93.60% accuracy, 91.34% 

kappa (mean CV accuracy of 90.88% and mean CV kappa of 87.62%), respectively. 
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This modeling strategy led to a significant increase in predictive power also for 

negative discrete emotions. The predictive power difference between positive, neutral and 

negative classes was reduced (σhappy open = 2.71, σneutral = 1.36, σfear = 5.32, σanger = 4.61). 

 8. General Discussion  

The current work makes three novel contributions. First, we demonstrate that current 

emotion detection systems yield substantive variation in predictive accuracy across discrete 

emotions. Second, we demonstrate two modeling strategies to increase predictive accuracy 

both overall and specifically for target emotions. The first strategy is to expand the feature 

set by combining features across emotion detection systems. The second strategy is to use 

more flexible modeling techniques aiming at minimizing prediction error for misclassified 

classes and by using ensemble methods. Specifically, we show that ensembles of decision 

trees outperform a variety of other machine learning models (in terms of cross-validated 

accuracy on the test set).  

To the best of our knowledge, this is the first systematic study demonstrating the 

striking variability in predictive accuracy of automated emotion detection systems across 

discrete emotions and we provide two easy to implement modeling strategies to counter 

these inaccuracies.  
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