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Addressing Endogeneity using a Two-stage Copula

Generated Regressor Approach

Abstract

A prominent challenge when drawing causal inference using observational data is the

ubiquitous presence of endogenous regressors. The classical econometric method to

handle regressor endogeneity requires instrumental variables that must satisfy the

stringent condition of exclusion restriction, making it infeasible to use in many

settings. We propose a new instrument-free method using copula to address the

endogeneity problem. Existing copula correction methods require sufficiently non-

normal endogenous regressors. Furthermore, existing copula control function meth-

ods presume the independence of exogenous regressors and the endogenous regressor.

Our proposed two-stage copula endogeneity correction (2sCOPE) method simulta-

neously relaxes the two key identification requirements, and we theoretically prove

that 2sCOPE yields consistent causal-effect estimates with correlated endogenous

and exogenous regressors as well as normally distributed endogenous regressors. Be-

sides relaxing identification requirements, 2sCOPE has superior finite-sample per-

formance and addresses the significant finite sample bias problem due to insufficient

regressor non-normality. 2sCOPE employs generated regressors derived from exist-

ing regressors to control for endogeneity, and is straightforward to use and broadly

applicable. Overall, 2sCOPE can greatly increase the ease and broaden the applica-

bility of using instrument-free methods to handle regressor endogeneity. We further

demonstrate the performance of 2sCOPE via simulation studies and an empirical

application.

Our paper is intended for the ’Methods, Modelling & Marketing Analytics’ track.
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1 Methods

In this section, we develop a copula-based instrument-free method (2sCOPE) to han-

dle endogenous regressors with insufficient non-normality and correlated with exogenous

regressors. The 2sCOPE method jointly models the endogenous regressor, Pt, the corre-

lated exogenous variable, Wt, and the structural error term, ξt, using the Gaussian copula

model, which implies that [P ∗
t ,W

∗
t , ξ

∗
t ] follows the multivariate normal distribution:

P ∗
t

W ∗
t

ξ∗t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 , (1)

where P ∗
t = Φ−1(H(Pt)), W

∗
t = Φ−1(L(Wt)), and ξ∗t = Φ−1(G(ξt)), and H(·), L(·) and

G(·) are marginal CDFs of Pt, Wt and ξt respectively. Under the above Gaussian copula

model, we have the following system of equations that are similar to two-stage least-

squares method using IVs. However, we do not require any variable that satisfies the

exclusion restriction.

Yt = µ+ Ptα +Wtβ + ξt (2)

P ∗
t = W ∗

t γ + ϵt, (3)

where the two error terms ϵt and ξt are correlated because of the endogeneity of Pt. Under

the assumption that ξt follows a normal distribution, ϵt and ξt follow a bivariate normal

distribution, since they are a linear combination of tri-normal variate (ξ∗t , P
∗
t ,W

∗
t ) under

the Gaussian copula assumption. Equation (3) expresses the copula transformation of

the endogenous regressor, determined by the rank-order of Pt, as a linear combination of

observed and unobserved variables.

The main idea of 2sCOPE is to make use of the fact that, by conditioning on ϵt, the

structural error term ξt becomes independent of both Pt andWt. That is, by conditioning

on the component of Pt causing the endogeneity of Pt (i.e, ϵt here), the structural error

is not correlated with both Pt and Wt, thereby ensuring the consistency of standard

estimation methods. In this sense, ϵt serves as a (scaled) control function to address the

endogeneity bias. To demonstrate this point, note that the Gaussian copula model in

Equation (1) can be rewritten as follows:
P ∗
t

W ∗
t

ξ∗t

 =


1 0 0

ρpw
√

1− ρ2pw 0

ρpξ
−ρpwρpξ√

1−ρ2pw

√
1− ρ2pξ −

ρ2pwρ2pξ
1−ρ2pw

 ·


ω1,t

ω2,t

ω3,t

 ,

where [ω1,t, ω2,t, ω3,t] are standard normal. Given the above joint normal distribution

for (P ∗
t ,W

∗
t , ξ

∗
t ) and ξ

∗
t = σξξt , we have
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P ∗
t = ρpwW

∗
t +

√
(1− ρ2pw) · ω2,t = ρpwW

∗
t + ϵt, (4)

which shows γ in Equation (3) is ρpw and ϵt =
√

(1− ρ2pw) · ω2,t, and

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t

= µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

(P ∗
t − ρpwW

∗
t ) + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t,

= µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

ϵt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t. (5)

Equation (5) suggests adding the estimate of the error term ϵt from the first stage regres-

sion as a generated regressor to the outcome regression instead of using P ∗
t and W ∗

t . The

new error term ω3,t is uncorrelated with all the regressors in Equation (5), ensuring the

consistency of model estimates. This two-step procedure, named as 2sCOPE, adds the

first-stage residual term ϵ̂t to control for endogeneity and in this aspect is similar to the

control function approach of Petrin and Train (2010). However, unlike Petrin and Train

(2010), 2sCOPE requires no use of instrumental variables.

2 Simulation Study

In this section, we conduct Monte Carlo simulation studies for the following goals: (a)

to assess the performance of the proposed method for correlated regressors, (b) to assess

the performance of the proposed method under regressor normality and near normality,

and (c) to assess the performance of the proposed method under various types of struc-

tural models. We compare the performance of 2sCOPE with existing methods (OLS and

CopulaOrigin from Park and Gupta (2012)). Following Park and Gupta (2012), we measure

the estimation bias using tbias calculated as the ratio of the absolute difference between

the mean of the sampling distribution and the true parameter value to the standard error

of the parameter estimate. As defined above, tbias represents the size of bias relative to

the sampling error.

2.1 Case 1: Non-normal Regressors

We first examine the case when P and W are correlated. The data-generating process

(DGP) is summarized below:
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P ∗
t

W ∗
t

ξ∗t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 = N




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 , (6)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (7)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (8)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt, (9)

where ξ∗t and P ∗
t are correlated (ρpξ = 0.5), generating the endogeneity problem; W ∗

t is

exogenous and uncorrelated with ξ∗t ; W
∗
t and P ∗

t are correlated (ρpw = 0.5), and thus

Wt and Pt are correlated. We consider four different estimation methods: (1) OLS, (2)

CopulaOrigin and (3) the proposed 2sCOPE in the form of Equation (5). We set the sample

size T = 1000, and generate 1000 data sets as replicates using the DGP above. In the

simulation, we use the gamma distribution Gamma(1, 1) with shape and rate equal to 1

for Pt and the exponential distribution Exp(1) with rate 1 for Wt. Models are estimated

on all generated data sets, providing the empirical distributions of parameter estimates.

OLS CopulaOrigin 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.689 0.045 6.964 1.231 0.081 2.849 1.009 0.059 0.157

α 1 1.571 0.036 15.75 1.055 0.069 0.791 0.986 0.070 0.197

β -1 -1.259 0.031 8.236 -1.289 0.031 9.169 -0.995 0.042 0.123

ρpξ 0.5 - - - 0.570 0.047 1.504 0.504 0.038 0.097

σξ 1 0.862 0.020 6.902 1.011 0.043 0.244 1.006 0.040 0.143

0.7 µ 1 0.730 0.041 6.629 1.307 0.076 4.037 1.005 0.053 0.088

α 1 1.800 0.041 19.67 1.260 0.068 3.838 0.991 0.075 0.118

β -1 -1.529 0.037 14.21 -1.567 0.037 15.36 -0.994 0.056 0.110

ρpξ 0.5 - - - 0.633 0.043 3.130 0.500 0.026 0.000

σξ 1 0.799 0.018 11.18 0.980 0.044 0.468 1.003 0.040 0.084

Table 1: Results of the Simulation Study Case 1: Non-normal Regressors
Note: Mean and SE denote the average and standard deviation of parameter estimates over all the
1,000 simulated samples.

Table 1 reports estimation results. As expected, OLS estimates of both α and β are

biased (tbias = 15.75/8.24) due to the regressor endogeneity. CopulaOrigin reduces the

bias, but still shows significant bias for the coefficient estimates of Pt and Wt. The bias

of CopulaOrigin depends on the strength of the correlation between W and P . Stronger

correlations between P ∗ and W ∗ can cause a larger bias of CopulaOrigin estimates. For

example, when the correlation between W ∗ and P ∗ increases from 0.5 to 0.7, the bias

of estimated α increases by around five times (from 0.055 to 0.260 in Table 1 under the

column “CopulaOrigin”). The bias confirms our derivation in the model section, demon-

strating that using the existing copula method may not solve the endogeneity problem
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completely with correlated regressors. The proposed 2sCOPE method provides consistent

estimates without using instruments. The average estimates of ρpξ is close to the true

value 0.5 and is significantly different from 0, implying regressor endogeneity detected

correctly using 2sCOPE.

2.2 Case 2: Normal Regressors

Next, we examine the case when the endogenous regressor and (or) the correlated exoge-

nous regressor are normally distributed. We pay special attention to this case because

normality is not allowed for endogenous regressors in Park and Gupta (2012). We use

the same DG as described in Equations (6) to (9) to generate the data, except that the

marginal CDFs for regressors, H(·) and L(·), are chosen according to the distributions

listed in the first two columns in Table 2.

Table 2 summarizes the estimation results. As expected, OLS estimates are biased.

CopulaOrigin produces biased estimates whenever the endogenous regressor P follows a

normal distribution. The estimates of CopulaOrigin are biased when P follows a gamma

distribution (first row of Table 2) for a different reason: P and W are correlated. By

contrast, the proposed 2sCOPE method provides consistent estimates as long as Pt and

Wt are not both normally distributed. Both α and β are tightly distributed near the true

value whenever Pt or Wt is nonnormally distributed. Unlike CopulaOrigin, 2sCOPE adds

the residual term obtained from regressing P ∗
t on W ∗

t as the generated regressor. Thus,

as long as Pt and Wt are not both normally distributed, the residual term is not perfectly

co-linear with the original regressors, permitting model identification. Only when both Pt

and Wt are normally distributed (the last scenario in Table 2), the residual term added

into the structural regression model becomes a linear combination of Pt and Wt, causing

perfect co-linearity and model non-identification.

Overall, this simulation study demonstrates the capability of the proposed 2sCOPE

to relax the non-normality assumption in CopulaOrigin as long as one of Pt and Wt is

nonnormally distributed.

2.3 Case 3: Random Coefficient Linear Panel Model

We investigate the performance of 2sCOPE in random coefficient linear panel model. We

use the copula function and marginal distributions of [Pit,Wit, ξit] as specified in Case 1

(Equations 6-8). We assign ρpw = 0.7 as an example. We then generate the outcome Yit

using the following standard random coefficient linear panel model:

Yit = µ̄+ µi + Pit(ᾱ + ai) +Wit(β̄ + bi) + ξit = 1 + µi + Pit(1 + ai) +Wit(−1 + bi) + ξit,

where [µi, ai, bi] ∼ N(0, I3), t = 1, ..., 50 indexes occasions for repeated measurements,

and i = 1, ..., 500 indexes the individual units. The above random coefficients model

permits individual units to have heterogeneous baseline preferences (µi) and heterogeneous
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Distribution OLS CopulaOrigin 2sCOPE

P W Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

Gamma Normal µ 1 0.431 0.045 12.63 1.018 0.078 0.227 1.015 0.077 0.190

α 1 1.569 0.037 15.40 0.979 0.070 0.302 0.985 0.070 0.212

β -1 -1.259 0.030 8.619 -1.333 0.028 11.78 -0.997 0.045 0.067

ρpξ 0.5 - - - 0.640 0.039 3.556 0.506 0.036 0.151

σξ 1 0.861 0.019 7.240 1.064 0.046 1.394 1.005 0.038 0.134

Normal Exp µ 1 1.286 0.042 6.777 1.286 0.045 6.374 1.023 0.070 0.334

α 1 1.628 0.031 20.36 1.532 0.462 1.152 1.048 0.126 0.381

β -1 -1.286 0.032 8.956 -1.287 0.032 8.960 -1.024 0.062 0.383

ρpξ 0.5 - - - 0.089 0.419 0.980 0.465 0.074 0.473

σξ 1 0.829 0.018 9.492 0.940 0.151 0.394 0.980 0.063 0.318

Normal Normal µ 1 1.001 0.026 0.046 1.002 0.030 0.052 1.002 0.028 0.057

α 1 1.668 0.030 22.38 1.663 0.450 1.474 1.655 0.395 1.657

β -1 -1.335 0.029 11.44 -1.335 0.029 11.42 -1.328 0.197 1.668

ρpξ 0.5 - - - 0.006 0.412 1.198 0.010 0.303 1.616

σξ 1 0.816 0.019 9.687 0.917 0.155 0.534 0.879 0.092 1.317

Table 2: Results of Case 2: Normal Regressors

responses to regressors (ai, bi). Such random coefficients models are frequently used in

marketing studies to capture individual heterogeneity and to profile and target individuals.

The correlation between ξit and Pit creates the regressor endogeneity problem, which can

cause biased estimates for standard linear random coefficient estimation methods ignoring

the regressor-error correlation. We generate individual-level panel data as described above

for 1000 times and use the data for estimation. Estimation results are in Table 3. LME

is the standard estimation method for linear mixed models assuming all regressors are

exogenous, as implemented in the R function lme(). LME and CopulaOrigin are biased

because of endogeneity and correlated exogenous regressors, respectively. Our proposed

method 2sCOPE provides unbiased estimates that are tightly distributed around the true

values for all parameters.

LME CopulaOrigin 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ̄ 1 0.722 0.046 6.052 1.314 0.049 6.399 1.004 0.048 0.091

ᾱ 1 1.853 0.045 18.83 1.293 0.045 6.469 1.000 0.046 0.008

β̄ -1 -1.557 0.045 12.39 -1.598 0.044 13.56 -1.000 0.044 0.005

σµ 1 0.985 0.033 0.459 0.982 0.033 0.547 0.984 0.031 0.522

σα 1 0.988 0.036 0.326 0.987 0.034 0.397 0.989 0.035 0.316

σβ 1 0.993 0.031 0.235 0.992 0.033 0.249 0.992 0.033 0.248

ρpξ 0.5 - - - 0.646 0.009 16.33 0.507 0.005 1.365

σξ 1 0.794 0.004 57.71 0.957 0.010 4.439 0.985 0.009 1.640

Table 3: Results of Simulation Study Case 3: Random Coefficient Linear Panel Model
Note: σµ, σα, σβ are standard deviations of µi, ai, bi.
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3 Empirical Application

In this section, we apply our method to a real marketing application. We illustrate

the proposed method to address the price endogeneity issue using store-level sales data

of toothpaste category in Chicago over 373 weeks from 1989 to 1997 1. To control for

product size, we select toothpaste with the most common size, which is 6.4 oz. Retail

price is usually considered endogenous. The endogeneity of retail price can come from

unmeasured product characteristics or demand shocks that can influence both consumers’

and retailers’ decisions. Since these variables are unobserved by researchers, they are

absorbed into the structural error, leading to the endogeneity problem. Prices of different

stores are correlated and often used as an IV for each other. This allows us to test the

performance of the proposed 2sCOPE method in an empirical setting where a good IV

exists. Besides the endogenous price, two promotion-related variables, bonus promotion

and direct price reduction, would also affect demand. Following Park and Gupta (2012),

we treat the promotion variables as exogenous regressors. We focus on category sales in

two large stores in Chicago (referred to as Stores 1 and 2). We convert retail price, in-

store promotion and sales from UPC level to aggregate category level, weighted by weekly

market share. The correlation between log retail price and bonus promotion in Store 1

Store 1 Store 2

Variables Mean SD Max Min Mean SD Max Min

Sales (Unit) 115 52.8 720 35 165.7 93.7 1334 26

Price ($) 2.06 0.20 2.48 1.46 2.10 0.21 2.48 1.47

Bonus 0.18 0.20 0.80 0.00 0.16 0.19 0.79 0.00

PriceRedu 0.10 0.19 0.72 0.00 0.10 0.19 0.73 0.00

Table 4: Summary Statistics

(Store 2) is -0.30 (-0.15), and the correlation between log retail price and price reduction

promotion in Store 1 (Store 2) is -0.23 (-0.35). Both the correlations are significantly

different from zero. The appreciable correlations between price and promotion variables

actually provide a good setting for testing our method. The moderate sample size (T=373)

also provides an opportunity to compare finite sample performance of different copula

correction methods in the presence of potentially insufficient regressor non-normality in

real data. Summary statistics of key variables are summarized in Table 4.

We estimate the following linear regression model:

log(Salest) = β0 + log(Retail Pricet) · β1 +W ′
tβ2 + ξt,

1We obtained the data from https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
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(a) detrended log price (b) bonus (c) price reduction

Figure 1: Histogram of Log Retail Price, Bonus and Price Reduction in Store 1

where t = 1, 2, ..., T indexes week. The vector Wt includes all exogenous regressors, which

are two promotion variables, bonus promotion and price reduction, in this application.

Figure 1 shows the histograms of detrended log retail prices and the two promotion vari-

ables. All the three variables are continuous variables. Moreover, except log retail price,

which is a bit close to normal distribution, the other two regressors, bonus and price

reduction, are both nonnormally distributed. Therefore, we expect that the proposed

2sCOPE method can exploit these additional features of exogenous regressors correlated

with the endogenous regressor for model identification and estimation even if the endoge-

nous regressor has a close-to-normal distribution. We estimate the model using the OLS,

two-stage least-squares (TSLS), CopulaOrigin, and our proposed 2sCOPE method.

We use the IV-based TSLS estimator as a benchmark to test the validity of our pro-

posed method. Following Park and Gupta (2012), we use retail price at the other store

as an instrument for price. This variable can be a valid instrument as it satisfies the two

key requirements. First, retail prices across stores in a same market can be highly corre-

lated because wholesale prices are usually offered the same (or very close). The Pearson

correlation between the detrended log retail prices at Stores 1 and 2 is 0.79, providing

strong explanatory power on the endogenous price. The correlation is comparable to

that in Park and Gupta (2012). Second, some unmeasured product characteristics such

as shelf-space allocation, shelf location and category location are determined by retailers

and are usually not systematically related to wholesale prices (exclusion restriction). For

the three copula-based methods, we make use of information from the existing endoge-

nous and exogenous regressors and no extra IVs are needed. In CopulaOrigin, we add the

copula transformation of the detrended log price, logP∗ = Φ−1(Ĥ(logP)), as a “generated

regressor” to the outcome regression. For the 2sCOPE method, we first regress logP∗ on

Bonus∗ (= Φ−1(L̂1(Bonus))) and PriceRedu∗(= Φ−1(L̂2(PriceRedu))), and then add the

residual as the only “generated regressor” to the outcome regression. Ĥ(·), L̂1(·), L̂2(·)
are all estimated CDFs using the univariate empirical distribution for each regressor.

Standard errors of parameter estimates are obtained using bootstrap.
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Table 5 reports the estimation results. Beginning with the results from Store 1, OLS

estimates are significantly different from TSLS estimates, indicating that the price endo-

geneity issue occurs. Instrumenting for retail price changes the price coefficient estimate

from -0.767 to -1.797, implying that there is a positive correlation between unobserved

product characteristics and the price. The estimates of ρ in the three IV-free copula-

based methods, representing the correlation between the endogenous regressor Pt and the

error term, are all significantly positive, further confirming our previous conclusion. This

direction of correlation is consistent with previous empirical findings (e.g., Villas-Boas

and Winer 1999, Chintagunta, Dubé, and Goh 2005). The price elasticity estimates from

OLS TSLS CopulaOrigin 2sCOPE

Store Parameters Est SE t-value Est SE t-value Est SE t-value Est SE t-value

Store 1 Constant 1.301 1.197 0.25 -2.993 1.646 1.82 -8.526 2.619 3.26 -3.908 2.314 1.69

Price -0.767 0.288 2.66 -1.797 0.396 4.54 -3.082 0.620 4.97 -2.014 0.555 3.63

Bonus 0.371 0.122 3.31 0.104 0.141 0.74 0.415 0.115 3.61 0.064 0.171 0.37

PriceRedu 0.498 0.115 4.33 0.285 0.125 2.28 0.544 0.111 4.90 0.275 0.143 1.92

ρ - - - - - - 0.521 0.098 5.32 0.297 0.089 3.34

Store 2 Constant -3.898 1.246 3.13 0.763 1.943 0.39 1.107 3.404 0.33 0.001 2.702 0.00

Price -1.982 0.300 6.61 -0.864 0.467 1.85 -0.799 0.807 0.99 -1.048 0.648 1.62

Bonus 0.062 0.116 0.53 0.286 0.148 1.93 0.032 0.117 0.27 0.239 0.151 1.58

PriceRedu 0.283 0.111 2.55 0.540 0.137 3.94 0.275 0.110 2.5 0.467 0.152 3.07

ρ - - - - - - -0.319 0.177 1.80 -0.188 0.109 1.72

Table 5: Estimation Results: Toothpaste Sales

the CopulaOrigin and the proposed method 2sCOPE are -3.082 and -2.014, respectively.

Among the two estimates, the estimate of -2.014 from the proposed 2sCOPE is close to

the estimate of -1.797 from the TSLS method, whereas the existing copula yields substan-

tially greater-sized price elasticity estimates. We confirm in the literature that the TSLS

and 2sCOPE estimates are reasonable because the price elasticity of toothpaste category

is around -2.0 (Hoch et al. 1995, Mackiewicz and Falkowski 2015). Comparing the esti-

mates of ρ from the three IV-free copula-based methods, our proposed 2sCOPE provides

a much smaller estimate of ρ (0.297 for 2sCOPE vs 0.521 for CopulaOrigin in Table 5),

consistent with the over-correction in CopulaOrigin. Reasons for the substantial differences

in the 2sCOPE estimates from the CopulaOrigin include (1) correlated endogenous and ex-

ogenous regressors and (2) the unimodal close-to-normality distribution for the logarithm

of price variable, which can lead to poor finite sample performance for CopulaOrigin.

Unlike Store 1, the results from Store 2 indicate that the retail price is not endogenous.

First, the estimates of ρ (the correlation between price and the error term) are not signif-

icantly different from 0 for both CopulaOrigin and 2sCOPE (t-value ≤ 1.96 under columns

“CopulaOrigin” and “2sCOPE” for Store 2 in Table 5). Second, the estimated price coeffi-

cient of OLS is -1.982, which is very close to the estimates of TSLS and 2sCOPE in Store

1 and further confirming no endogeneity of price in Store 2. Overall, the price elasticity

estimates from TSLS and the three IV-free copulas-based methods are close to each other
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for Store 2, and the observed differences between them and the OLS estimate can be

attributed to estimation variability incurred from using more complicated models instead

of the presence of endogeneity.
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