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Application of Convolutional Neuronal Networks in Customer Base 

Analysis 

 

Abstract: 

Customer lifetime value is a useful metric in customer relationship marketing, offering insights 

into distinct customer segments. However, predicting future purchase behavior poses a 

significant challenge in calculating customer lifetime value, particularly in noncontractual 

business relationships. In recent decades, various approaches have emerged to predict future 

customer activities. In the literature  of customer lifetime value, probabilistic models represent 

the most widely used approach, which describe a purchase process based on predefined 

assumptions. While these assumptions may reflect the inherent features of a purchase process, 

their applicability cannot be generalized for all purchase processes. To address this, the current 

study employs the deep learning approach. At its core, a convolutional neuronal network is 

designed and evaluated on two real-world data sets. Depending on the data, the evaluation of 

the model shows a better forecast compared to the benchmark models. 
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1. Introduction 

Customer lifetime value (CLV) is a powerful metric used in customer relationship 

marketing to assess the net financial value of customers and to identify the most profitable 

customers in a company. For calculating the CLV, various approaches have been proposed in 

recent decades to explore customers' historical purchasing behavior and to predict their future 

buying activities in a noncontractual setting (Gupta et al., 2006). The most widely used 

approach in the literature of CLV are probability models. Probability models view a purchase 

behavior as realizations of a stochastic process. Some of the most prominent representatives of 

probability models are Pareto/NBD (Schmittlein, Morrison and Colombo, 1987), BG/NBD 

(Fader, Hardie and Lee, 2005), and Pareto/GGG (Platzer & Reutterer, 2016).  

The major drawback of the probability models lies in the fact that they analyze a purchase 

process according to predefined assumptions, such as those pertaining to the distribution of 

interpurchase time. These models often overlook the dynamic evolution of purchase processes 

over time. While these assumptions can realistically mirror the underlying purchase process in 

a data set, their performance cannot be generalized for all purchase processes. To overcome this 

challenge, the deep learning approach has been applied in recent years in order to analyze 

underlying patterns in purchase behavior of customers (Bauer & Jannach, 2021; Chen, Guitart, 

Del Rio and Perianez, 2018; Salehinejad & Rahnamayan, 2016; Valendin, Reutterer, Platzer 

and Kalcher, 2022). Deep learning algorithms offer a flexible framework, which adapts to the 

conditions of data, instead of fitting the data to the model assumptions. Among all deep learning 

algorithms in the literature of CLV, the recurrent neural network (RNN) is widely used (Bauer 

& Jannach, 2021; Salehinejad & Rahnamayan, 2016; Valendin et al, 2022). RNNs are primarily 

specialized for sequential data, featuring an architecture optimized to effectively model long-

term temporal patterns (Rezk, Purnaprajna, Nordstrom and Ul-Abdin, 2020). In a recent study, 

Valendin et al. (2022) have developed an training model, which represents a special from of 

RNN named long short-term memory (LSTM). This model learns autoregressively from the 

input data to predict the individual number of transactions in the next period. A limitation of 

RNNs lies in their high memory consumption, particularly when dealing with extended input 

sequences (Rezk et al, 2020). 

The current study applies the technique of temporal convolutional neuronal network (CNN) 

to learn from customers' past purchase behavior and to forecast their future purchase activity. 

CNNs are a well-established deep learning approach and can, due to their architecture, 

efficiently learn both spatial and temporal information (Sezer, Gudelek and Ozbayoglu, 2020). 
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In the realm of time series, CNNs are well-suited for capturing short-term patterns and 

dependencies, in contrast to RNNs (Lai, Chang, Yang and Liu, 2018). Their inherent design for 

translation invariant enables them to recognize patterns regardless of their position in the input. 

This can be beneficial when the specific timing of a pattern is not crucial in time series (Biscione 

& Bowers, 2020). Furthermore, the problems of vanishing or exploding gradients are highly 

reduced in CNNs due to the property of local connectivity and weight sharing (Bai, Kolter and 

Koltun, 2018; Martens & Sutskever, 2011; O'Shea & Nash, 2015p. 8). Despite these 

advantages, CNNs has rarely been analyzed in the domain of CLV. Chen et al. (2018) are, to our 

best of knowledge, the only researchers in the field, who have employed this technique to 

predict the future expenditure of customers. The current study proposes a CNN-based algorithm 

to learn the features of purchase processes over time and to forecast the future number of 

purchases. This model is subsequently evaluated on two real-world data sets.  

   

2. Modeling Approach  

At the core of CNN architectures lie the convolutional layers, designed primarily to extract 

key features from the input data. Figure 1 shows an example of a simple temporal convolutional 

layer with a univariate time sequence as input data. The input sequence is convolved by 

performing an element-wise scalar product between the kernel and the input data at each 

position, followed by a summation. The parameters of the kernel are learnable entities. The 

outcome is passed through an activation function, determining the output of the convolutional 

layer (Valueva, Nagornov, Lyakhov, Valuev and Chervyakov, 2020). The most commonly used 

activation function for a CNN layer is the rectified linear unit (Relu), which allows only the 

positive inputs to get through (Ide & Kurita, 2017). The result generated by a convolutional 

layer is referred to as a feature map because it captures the characteristics of the input data.  

 

Figure 1. An example of a temporal convolutional layer 
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Convolutional layers are usually followed by a max-pooling layer, which reduces the size 

of feature maps by retaining only their local maximum values, thereby decreasing the 

computational complexity of the model (O'Shea & Nash, 2015p. 8). CNN architectures are 

constructed by stacking several convolutional layers and pooling layers, to progressively extract 

more and more complex features of the original input data. The output of the last convolutional 

layer is flattened and then passed through fully connected (FC) layers. The FC layers transform 

the features of the input data to a score, which can be interpreted as a probability in classification 

tasks or as a prediction in sequence modeling (O'Shea & Nash, 2015p. 5). The whole model is 

trained using a variant of gradient descent, like stochastic gradient descent (SGD). At the end 

of each iteration, known as epoch, the model parameters are adjusted by minimizing the loss 

function and backpropagating through all the layers.  

Figure 2 gives an overview of the base architecture of the proposed CNN. The 

hyperparameters of the model are based on the research of Chen et al. (2018) and Livieris, 

Pintelas and Pintelas (2020). However, the initial hyperparameters in these studies were further 

adjusted by implementing the random walk algorithm (Matuszyk, Castillo, Kottke and 

Spiliopoulou, 2016). The batch normalization layer normalizes the output of each layer before 

proceeding to the next layer. This accelerates the training process and enables a higher learning 

rate (Santurkar, Tsipras, Ilyas and Madry, 2018). Using a linear activation function, the model 

forecasts the future number of purchases. The linear activation function is frequently employed 

when the objective is to predict a continuous output. The CNN model iterates until the loss 

function for the test set shows no decrease for 20 consecutive epochs. 

 

Figure 2. Architecture of the proposed CNN model 

In the present study, the input data comprises a multivariate time series consisting of the 

following individual sequences: (Chen et al, 2018; Tran, Nguyen, Van-Ho and Ho, 2021):  

 Recency: the time of the last purchase in each period 

 Frequency: the accumulated number of purchases in each period 
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 Monetary: the accumulated amount spent per purchase in each period 

 Transaction rate: calculated as the reciprocal of the interpurchase time between two 

consecutive purchases in each period (Allenby, Leone and Jen, 1999) 

Table 1 gives an example of the input data of a hypothetical customer over time. In this 

scenario, the customer makes a purchase during the first, second, fifth, and eighth week, 

spending €29.33, €13.97, €38.9, and €14.3, respectively. The associated recency values for each 

purchase opportunity are 0.14, 1.86, 4.86, and 7.16, respectively. The transaction rate from the 

first to the second transaction is 1, since the interpurchase time between the first and the second 

transaction is just one week. The interpurchase time from the second to the third transaction, 

and from the third to the fourth transaction amounts to three weeks each. Hence, the transaction 

rate in these weeks is equal 0.33.  
 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 
Recency 0.14 1.86 1.86 1.86 4.86 4.86 4.86 7.16 

Frequency 1 2 2 2 3 3 3 4 
Monetary 29.33 43.3 43.3 43.3 82.2 82.2 82.2 96.5 

Transaction rate 0 1 0.33 0.33 0.33 0.33 0.33 0.33 

Table 1. Input sequence of a hypothetical customer over time 

 

3. Data Sets 

The proposed CNN model is applied and evaluated on the following two data sets:  

 CDNOW: this data set is the most extensively analyzed data set in the literature of CLV 

(Platzer & Reutterer, 2016) and covers the purchase history of 23,570 customers of an 

online CD retailer from January 1st, 1997 to June 30th, 1998. The length of the calibration 

and holdout period is 39 weeks. A random ratio of 90% of this data set is used for the 

training set and the remaining proportion of 10% for the test set.  

 HandyTicket: this data set includes the purchase records of 2,454 passengers, who were 

registered on a German public transport mobile application between January 24th, 2021, 

and January 22nd, 2023. This application enables users to conveniently buy bus and train 

tickets whenever necessary. Both the calibration and holdout periods each span 52 weeks. 

The training set comprises a randomly selected 70% of passengers, while the test set 

includes the remaining 30%.  

Figure 3 shows the weekly aggregate transactions of both data sets. In contrast to the 

CDNOW data set, the HandyTicket data set exhibits a sudden temporal decline in the number 
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of transactions in the holdout period.1 An imbalanced training set could have a detrimental 

influence on the performance of CNNs, since the models might focus more on the majority 

class and fail to learn important features related to the minority classes (Buda, Maki and 

Mazurowski, 2018). Therefore, the unsupervised clustering algorithm of k-means is first 

applied to gain a deeper understanding of different customer clusters in the training set (Anitha 

& Patil, 2022). To cluster the customers, the individual indicators of recency, frequency, and 

monetary value at the end of the calibration period, as well as the mean value of transaction rate 

over the calibration period are used. 

 

Figure 3. Weekly aggregate transactions 

Figure 4 illustrates the optimal number of clusters determined through the elbow criterion. 

According to this analysis, the CDNOW data set exhibits an optimal number of 5 clusters, while 

the HandyTicket data set shows an optimal number of 7 clusters. Silhouette score provides a 

measure to interpret how well the data points fit the cluster that they are assigned to (Anitha & 

Patil, 2022). A silhouette score above 0.65 denotes a well clustered data set (Lovmar, Ahlford, 

Jonsson and Syvänen, 2005). The silhouette score shows a value of 0.77 for the CDNOW data 

set and of 0.75 for the HandyTicket data set. 

    

Figure 4. Elbow criteria 

 
1 It is due to the promotional period of the €9 ticket from May 1st, 2022 to August 31st, 2022. During this period, 
everyone in Germany could use buses and trains for just €9 per month. 
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In Table 2, the characteristics of each cluster in both data sets are summarized. As can be 

seen, both data sets are highly imbalanced. The imbalance ratio (the number of data points in 

the minority class divided by the number of data points in the majority class) ranges from 

0.005% in the CDNOW data set to almost 0.1% in the HandyTicket data set. To tackle the issue 

of imbalanced data, the current research utilizes the hybrid resampling technique 

(Wongvorachan, He and Bulut, 2023). In this method, the minority clusters are oversampled to 

achieve a selected desired ratio relative to the majority cluster, while the majority cluster is 

randomly undersampled to meet the desired ratio. The selection of the desired ratio depends on 

the size of the data set and the cluster proportions (Chawla, Bowyer, Hall and Kegelmeyer, 

2002). The desired ratio for the CDNOW data has been set at 20%, and for the HandyTicket 

data set, it is 80% of the majority class (Chawla et al, 2002). Furthermore, the input and output 

data are standardized to improve and accelerate the training process (Wibawa et al., 2022). 

Data 
set 

Cluster 
Number of 
data point 

Mean of 
recency 

Mean of 
frequency 

Mean of 
monetary 

Mean of 
transaction rate 

C
D

N
O

W
 1 18,907 11.22 1.57 43.64 0.047 

2 2,074 26.82 5.33 276.61 0.14 
3 221 31.89 12.18 1,017.31 0.28 
4 10 33.55 43.8 5,024.19 0.61 
5 1 38.71 107 20,895.27 0.97 

H
an

dy
T

ic
k

et
 1 1,047 30.59 3.48 20.78 0.08 

2 370 39.35 12.24 101.62 0.19 
3 150 42.32 21.74 242.95 0.30 
4 90 44.9 28.53 464.26 0.34 
5 42 46.85 36.66 832.95 0.35 
6 19 48.36 39.31 1,227.76 0.37 
7 1 51.71 90 3,530.99 0.22 

Table 2. Cluster characteristics 

 

4. Results and Comparison 

The implementation of the model and the prediction of the future purchase numbers are 

carried out in Python (version 3.8) using open-source libraries Keras and TensorFlow. Because 

of the stochastic nature of the algorithm, the results of neural networks may exhibit variations 

in numerical precision. Therefore, the training of the proposed CNN is performed five times. 

The prediction of individual purchases in each period is based on the average outcome. To 

evaluate the forecast ability of the proposed CNN over time, the metric of mean absolute percent 

error (MAPE) is computed, since MAPE remains unaffected by the outliers over the forecast 

period (Valendin et al, 2022). As Valendin et al. (2022) suggest, the metric of root mean squared 

error (RMSE) is reported for evaluating the performance of the model at the individual level. 
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The following probability models are considered as comparison models: Pareto/GGG (Platzer 

& Reutterer, 2016), Pareto/NBD (Schmittlein et al, 1987), and BG/NBD (Fader et al, 2005). 

Additionally, the proposed LSTM algorithm by Valendin et al. (2022) is also used for 

benchmarking. Table 3 gives an overview of the forecast ability of all models over time (MAPE) 

and at individual level (RMSE). Regarding the CDNOW data set, all probability models provide 

a better forecast ability than the neuronal networks. The exceedingly high imbalance ratio 

makes this data set a challenge for neural networks. In the HandyTicket data set, the proposed 

CNN model effectively applies the features extracted from the input sequences to predict the 

future number of purchases. The prognostic efficacy of the CNN model surpasses that of 

benchmark models both temporally and across customer profiles. 

Data set Model RMSE MAPE 

CDNOW 

Proposed CNN 2.33 12.56% 
LSTM von Valendin et al. (2022) 2.30 21.04% 

Pareto/GGG 1.603 12.07% 
Pareto/NBD 1.602 11.76% 

BG/NBD 1.607 12.08% 

HandyTicket 

Proposed CNN 8.54 5.74% 
LSTM von Valendin et al. (2022) 18.75 33.49% 

Pareto/GGG 14.24 7.86% 
Pareto/NBD 13.89 10.51% 

BG/NBD 13.54 11.01% 

Table 3. Summary of results for all models 

 

5. Summary and Implications 

This paper introduces a CNN-based algorithm for predicting the number of individual 

purchases in noncontractual business relationships. The algorithm is applied to the CDNOW 

and HandyTicket data sets. To address the potential negative impact of an imbalanced training 

set on CNN performance, the k-means clustering algorithm is initially employed. This results 

in the creation of 5 clusters for the CDNOW data set and 7 clusters for the HandyTicket data 

set. Addressing the existing imbalance issue, the hybrid resampling method is implemented. In 

case of the HandyTicket data set, the proposed CNN provides substantially better predictions 

to the benchmark models. These findings enable the provider of the HandyTicket application 

to take suitable actions based on the forecasted behavior of his customers within each cluster. 

However, for the CDNOW data set, the probabilistic models outperform the known deep 

learning algorithms. Applying neuronal networks for this data set requires exploring 

alternatives such as transfer learning or data augmentation techniques to overcome the 
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challenges arising from the high imbalance ratio. Furthermore, the suggested CNN model can 

be enhanced by incorporating additional input sequences, e. g. marketing appeals. 
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