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A Gravity Model for Retail Store Entry

Abstract

We build an empirical framework of retail store location choice for a retail chain manager

based on the law of retail gravitation, the foundational theory of store choice. We estimate the

model using household loyalty-card data from a multichannel retail chain located in metropoli-

tan areas. Along with size of retail outlet, prices, promotion, and distance to a retail store, we

particularly measure and quantify the effects of (i) the distance of a retail store from house-

holds’ residence, and (ii) the actual weight of the shopping basket on the store-choice decision.

In particular, to our best knowledge, this paper is the first in the literature to quantify the

effect of actual weight of the shopping basket à la the law of retail gravitation. We also find

that when the weight of a basket increases by one pound, the likelihood of choosing the nearest

brick-and-mortar store increases by 1.43%. In a counterfactual analysis, we identify and com-

pare the profitability of candidate locations for a potential new chain store.

Keywords: store choice,law of retail gravitation
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1 Introduction

As more and more grocery retailers are becoming multi-channel retailers, the number of brick-

and-mortar stores that also serve online orders and provide in-store pickup services or delivery

services is increasing (Dawes & Nenycz-Thiel, 2014; Neslin & Shankar, 2009). When a manager

of a multi-channel retail chain seeks to open a new brick-and-mortar store that also serves online

orders (multi-channel store hereafter), assessing the demand of potential locations for opening a

multi-channel store is more complex than assessing the demand of potential locations for opening

a traditional brick-and-mortar store. First, the extent to which one multi-channel can cover the

geographical area is unclear. On the one hand, because customers do not have travel costs when

they make online purchases, the geographical reach of the multi-channel store could be anywhere

the store can provide delivery services. On the other hand, the presence of a nearby retail out-

let increases consumer consideration of the brand by creating top-of-mind awareness (Shriver &

Bollinger, 2015). In other words, if a physical multi-channel store chain is not located nearby, cus-

tomers are less likely to use the online channel of the store chain. Second, though previous literature

(e.g., Bell, Ho, & Tang, 1998; ?) shows how the pricing format of outlets, assortment size, and

distance to store affect customers’ store-choice behavior, one must understand why customers use

the online channel1 of the retail chain or one of the nearby offline outlets when the online channel

is another alternative option with other offline stores. Thus, the multi-channel retailer has diffi-

culty predicting the demand for each of its online and offline stores. Therefore, the multi-channel

store’s location decision requires the understanding of customers’ store-choice behavior while incor-

porating the existence of an online store. However, previous research on store choice focuses only

on customers’ physical-store-choice behavior (e.g., Bell et al., 1998; Briesch, Chintagunta, & Fox,

2009; ?), and studies on customer channel choice behavior (e.g. Chintagunta, Chu, & Cebollada,

2012) are based on the assumption that customers already choose the store chain before deciding

a shopping channel. Furthermore, empirical progress on identifying a set of retail locations that

would produce maximum revenue or profit has been limited, though the insight from early analyt-

ical models can help retailers identify the attributes of attractive locations (Glaeser, Fisher, & Su,

2019). Presumably, modeling customer store-choice behavior requires extensive data such as all

1We use ”online channel” (”offline channel”) and ”online store” (”offline store”) interchangeably.
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the store-choice records of households from a certain geographical area with the information of all

competing chains’ pricing formats, promotions, and product assortments. In this paper, we build

a store-choice model by constructing individualized store choice sets consisting of nearby offline

stores and an online store with unique data sets from a unique retail environment. In a counterfac-

tual analysis, we select potential locations for opening a new store and compare the profitability of

candidate locations for a new chain store.

2 Data

2.1 Focal Grocery Chain

Our data is collected from a major grocery retail chain in Korea. It has a prominent presence

throughout South Korea. It has around 300 physical stores and an online store. The centralized

online store, linked to all the retailer’s physical stores, allows customers to place orders on the

website, with the orders being filled and delivered by the nearest physical store.

The online store and offline stores provide the same range of products, aside from a few categories

such as alcohol, cigarettes, and a few ready-to-eat food products that are only available through

the offline channel. The retailer is a Hi-Lo chain and it practices uniform pricing and runs the

chainwide promotions. In addition, prices are identical across shopping channels. However, the

retailer has different promotions between online and offline.2

2.2 Household Panel Data

We obtained the complete shopping records of 6000 households between September 2013 and

August 2014.3 For each shopping trip undertaken by households in our sample, we observe the time

of the shopping trip, the items purchased, the purchase price, and the channel used. After remov-

ing households with missing demographic information and households that had too few shopping

trips, we are left with 5,337 households. As mentioned earlier, since our study aims to investi-

gate customers who do grocery shopping on foot, we select stores located in city with more than

500,000 population and select customers living within a 1.5 mile radius from each of offline store.

2There are rarely channel specific promotions. The price differences between the channels caused by the promotions
are considered in the analysis

3In our sample, we have a pre-analysis period (Sep 2013 - Dec 2013) and an analysis period (Jan 2014 - Aug 2014).
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Table 1: Household Demographics and Characteristics of Focal chain store
Sample for analysis

(2605)
Entire Sample

(5337)

Characteristics of Households
Age (loyalty card holder in a household) 42.79 (7.99) 41.90 (7.86)
Live in apartment 60.70% 57.15%
Marriage (married =1) 54.09% 52.78%
Gender (Female = 1) 86.36% 84.04%
Percentage of Offline trips 63.79% (38.2%) 62.00% (39.46%)
Number of Offline only households 930 1950
Number of Online only households 209 570
Number of mixed channel households 1466 2817

Characteristics of offline store of focal chain
Number of offline stores 190 205
Number of HH within a 0.19 mile (300m) radius of store 2943.11 (1287.5) 2940.59 (1256.44)
Number of HH within a 0.31 mile (500m) radius of store 6907.67 (3084.67) 6897.91 (3024.34)
Number of HH within a 0.43 mile (700m) radius of store 11559.46 (5630.3) 11557.24 (5554.56)
Number of HH within a 0.62 mile (1km) radius of store 19685.3 (10850.29) 19670.07 (10757.19)
Percentage of HH living in APT
within a 0.19 mile (300m) radius of store

72% (30%) 73% (30%)

Percentage of HH living in APT
within a 0.31 mile (500m) radius of store

69% (27%) 70% (27%)

Percentage of HH living in APT
within a 0.43 mile (700m) radius of store

67% (25%) 67% (25%)

Percentage of HH living in APT
within a 0.62 mile (1km) radius of store

64% (23%) 65% (23%)

After removing customers who report wrong address information, we use 2605 households out of

5337 households for the analysis. Table 1 presents major demographics and store characteristics

regarding household distribution near our focal chain stores.

3 Model

Our objective is to measure the gravity effect of basket weight and location and quantify the

effects on household store choice behavior. In accordance with this objective, we model store choice

model at the level of individual shopping trip occasions. The decision on which store she wants

to shop depends on distance to stores, price, promotion, expected weight of basket and store size.

Inspired by the gravity equation, we specify the utility that a household i derives choosing store j

at time t for the composition of basket xit is:
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Uijt = β0 + β1P (xit; j) + β2W (xit; j) + β3Dij + β4D
2
ij

+ β5Dij ∗W (xit) + β6P (xit; j) ∗W (xit)

+ β7Wndt + Sijθ +HHiδ + ϵijt

(1)

β0 fixed cost/benefit of shopping somewhere, Pijt is the price index of basket xit in store j.

We calculate the price indices based on price information from two public institutions in South

Korea. The institutions publish the prices of 400 necessities weekly and 400 agricultural and marine

products daily for each of major grocery chain. We assume that households choose a store to shop

based on their expected price across nearby stores and the price information from the institutions

can represent the households expectation across the nearby grocery chains. Because the products

that the institutions choose to publish the price information are most frequently purchased items in

general we assume the expected prices differences across chains can be captured by prices of those

products.

W (xit; j) is the basket weight, Dij distance to store j. If a store j is the focal chain’s online store

we assume that Dij and W (xit; j) are zero, because all the online order in our sample are delivered

households do not have utility/disutility from basket weight and distance for online orders4. That

is, basket weight, W (xit; j), is the same for all individual i’s nearby offline stores and 0 for online

store of the focal grocery chain. Thus, the coefficient, β2 captures the effect of weight of basket

on choosing the online channel of our focal grocery chain. We include Dij and D2
ij in the utility

equation. As shown in Figure ??, the channel usage pattern between online and offline stores of

the focal chain show quite differently and the relationship between the distance to focal store chain

and the expenditure through online channel of the focal chain shows the inverted U-shape. Thus,

we assume the relationship between the store choice decision and the distance is non-linear. Wndt

is the weekend dummy (1 if day t is a weekend, and 0 otherwise)

We also include the information of store size, Sij , which consists of three dummy variables:

small size, medium size, and online store (baseline is the large size store). Previous literature

show quite different result on the effect of store size on store choice decisions. Fox, Montgomery,

and Lodish (2004) and Briesch et al. (2009) show the positive relationship between the assortment

4In the online store, there is no pick-up option and deliveries from offline shopping are negligible in the data.
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size and the store choice decisions. On the other hand, Boatwright and Nunes (2001) shows the

negative relationship between assortment size and category sales. So, we include the size of stores

as a characteristics of store in store choice decision. We group sizes of stores based on the total

area of stores by assuming that stores with larger area are have larger product assortments. HHi

is the households’ demographics including age, whether living in APT, gender and marital status.

ϵijt is an idiosyncratic utility shock and we assume it follows Type I extreme value distribution.

Vijt(xit) is the utility from purchasing basket xit. Let Ji = {0, 1, 2, ..., Ji} denote the set of

nearby supermarkets to households i’s home. 0 here denotes the ”outside option,” carrying the

basket needs to tomorrow. Households problem can be formulated in the following two stages:

1. Choose whether to shop today. If the outside option is chosen, the basket need carries over,

i.e., xit+1 = xit ∪ x̃it , where x̃it is the ”flow of need.”

2. Choose the store that maximize Uijt from {Ji \ 0}.

The challenge we face here is that we only observe the basket compositions for the choices of

offline and online stores at the focal chain. We construct the flow of need with only the basket

composition we observe. When we observe the consecutive shopping trips at time at time t − n

and t with basket compositions, xit−n and xit respectively (n days elapsed between two observed

shopping at the focal chain), the flow of need between time t−n and t is interpolated by assuming

the need of xit is proportionally increased by interpurchase time from zero. That is, the amount of

need at time t− n+ 1 is the xit/n and so on.

It is indeed possible that the observed basket weights are not exogenous variable. The unob-

served factors that affect the store choice decision could also affect the weight of basket. We employ

a control function approach Petrin and Train (2010) to account for potential endogeneity of basket

weight. The idea behind the control function correction is to derive a proxy variable that conditions

on the part of W (xit) that depends on ϵijt. The control function approach seeks to recover the

unobserved portion in a first step and then to insert it into the utility function (1). In the first

step, we regress the potentially endogenous basket weight variable on a number of instruments as

well as on exogenous variables of the utility equation:

W (xit; j) = δJijt + γXijt + λi + ηijt (2)
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where Jijt and Xijt are vectors of instrument variables and observed characteristics in the utility

equation respectively, λ1i is a individual fixed effects. The error-term,ηijt, contains the unobserved

factors that are not captured by observed store characteristics. In the second step, the resudual

retained from (2) is plugged into the utility function:

Uijt = β0 + β1P (xit; j) + β2W (xit; j) + β3Dij + β4D
2
ij

+ β5Dij ∗W (xit) + β6P (xit; j) ∗W (xit)

+ β7Wndt + Sijθ +HHiδ

+ τ η̂ijt + ϵ̄ijt

(3)

Assuming that ϵ̄ijt is iid Type I extreme value distributed, we can write the conditional proba-

bility in terms of choice-specific expected value function

Pr(i chooses j|xit;β) =
exp(Vijt)∑

k∈Ji
exp(Vikt)

(4)

4 Result

We report the parameter estimates for the store choice component of the model in Table 2. We

find that the basket weight parameter is significantly negative. The coefficient for the basket weight

captures the effect of basket weight on choosing store between online store and other offline stores.

It suggests that households are likely to choose online store as their weight of baskets increase

(coefficient = -0.495; std-error = 0.008). The estimate for price index is significantly negative

(coefficient = -0.532; std-error = 0.022), as we expect.

We include square term of distance to store in the store choice utility model. We find that

the distance to store is non-linearly related to the store choice decision (coefficient for the square

term of distance = 1.497; std-error = 0.023). Previous literature that consider the store choice

behavior within only offline stores assume the linear relationship between the distance to a store

and the store choice decision. However, when an online store exists under customers’ choice set,

the disutility from the distance is not simply linear. We find that as the distance to offline store

increases households tend to use online store. We find this pattern in the relationship between

the distance to focal store chain and the probability of choosing focal chain’s shopping channel. It
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shows that as a household who uses both online and offline stores lives further from an offline store

the likelihood of choosing the offline store decreases. But the pattern in online store is different.

They are more likely to choose offline store if they live very close to the offline store (within 0.1

miles), but if the distance to the offline store is more than 0.5 miles, the likelihood of choosing the

online store is nearly constant regardless of the distance to the offline store. In addition, households

using only offline store have a greater utility reduction with distance compared to households using

both online and offline (on/off shopper). In addition, the negative impact of the distance on offline

store choice is stronger for offline-only shoppers than on/off shoppers.

Table 2: Model Estimates
Estimate SE

Intercept 0.540 0.035
Basket weight -0.495 0.008
Price indices -0.532 0.022
Distance to store -5.295 0.031
Distance to store^2 1.497 0.023
Store size - Online -2.119 0.019
Store size - Small -0.728 0.009
Store size - Med 0.333 0.007
Basket weight * Distance to store -0.015 0.001
Basket weight * Price indices 0.379 0.009
Age 0.010 0.001
Live APT 0.041 0.009
Gender - female 0.021 0.012
Marriage 0.077 0.008
Weekend Shopping -0.462 0.018
CF 5.446 0.057

We examine the relationship between a distance to focal chain’s nearest offline store and the

likelihood of choosing a focal chain’s channel by basket weight, and it shows that as the weight

of shopping basket increases the positive relationship between the distance and the likelihood

of choosing online channel is stronger. When the average basket weight is smaller than 5 lbs,

households are equally likely to choose online channel and offline channel when the distance to

nearest focal chain’s offline store is 0.49 mile (intersection between two lines in Figure 1-(a)), when

the basket weight is between 5 lbs and 15 lbs they are equally likely to choose both channels at 0.24

mile (Figure 1-(b)). When the basket weight is heavier than 25 lbs, they prefer online regardless of

their locations. This is a very important finding customer store modeling. So far, travel cost due
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Figure 1: Expected Probability of Choosing a Store by Basket Weight

to the distance to a store has been assumed the fixed cost for shopping in literature (e.g. Bell et al.,

1998; Briesch et al., 2009) employing the framework that customers choose a store to minimize the

sum of fixed and variable cost of shopping. That is, previous literature assume that disutility from

the distance to a store is not associated with the amount of buying items. However, our finding

shows that the disutility of travel cost is associated with the size of basket and the existence of

online store make strong the association because customers now use online store when they expect

to purchase large size basket.

Figure 2: Probability of Choosing a Store by Store Size
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To examine how the store choice decisions differ according to store size, we report the relation-

ship between the weight of baskets and the probability of choosing a store by store sizes in Figure

2. We find that households with small basket size (less than 10 lbs) are likely to choose medium

size offline store but they prefer online store with heavy basket (heavier than 10 lbs).
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